tìm 3 số x,y,z bt x/5=y/-7;y/4=z/15 và x+3y-4z=18
myna giúp mk nha
tìm 3 số tỉ lệ với các số 5;2,3;8,1 bt tổng 2 số đầu lớn hơn số thứ 3 là 8
tìm 3 số x,y,z bt x/5=y/-7, y/4=z/15 và x+3y-4z=18
Tìm x,y,z bt
a,x+1/3=y+3/4=z+5/6 và 2×x+3×y+4×z=9
b,x-1/3=y-2/4=z+7/5 và x+y-z =8
c,x/2=y/3, y/2=z/5 và x+y+z=50
d, x/2=y/5, y/3=z/2 và 2×x+3×y+5×z=127
bài 5: tìm x, y, z bt:
a, x/8 = y/12 vs x + y = 60
b, x/3 = y/6 vs x.y = 162
c, x/y = 2/5 vs x.y = 40
d, x/7 = y/6, y/8 = z/5 vs x + y - z = 37
e, 10x = 15y = 21z vs 3x - 5z + 7y = 37
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
Tìm x,y,z bt
x/3=y/4,y/5=z/6 và z-y=40
\(\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow z=\dfrac{5y}{6}\)
mà \(z-y=40\)
\(\Rightarrow\dfrac{5y}{6}-y=40\)
\(\Rightarrow-\dfrac{y}{6}=40\)
\(\Rightarrow y=-240\Rightarrow z=40+y=40-240=-200\)
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow x=\dfrac{3y}{4}=\dfrac{3.\left(-240\right)}{4}=-180\)
Vậy \(\left\{{}\begin{matrix}x=-180\\y=-240\\z=-200\end{matrix}\right.\)
Theo đề, ta có: \(\frac{x}{2}=\frac{y}{-5}\)và \(x-y=-7\)
Theo TC dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Leftrightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.-5=5\end{cases}}\)
a) theo đề, ta có:\(\frac{x}{3}=\frac{y}{4}\)và \(x+y=28\)
Theo TC dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)
\(\Leftrightarrow\hept{\begin{cases}x=4.3=12\\y=4.4=16\end{cases}}\)
1.Tìm x;y;z biết :\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x -3y +z=6
2.Tìm 2 số x,y bt rằng :\(\frac{x}{2}=\frac{y}{5}\)và x.y =40
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
1. so sánh các tích sau bằng cách hợp lý nhất :
P1 = ( -57/95 ) . ( -29/60 )
P2 = ( -5/11 ) . ( -49/73 ) . ( -6/23 )
P3 = -4/11 . -3/11 . -2/11 ........ 3/11 . 4/11
2. tìm các số nguyên x, y bt rằng :
x/4 - 1/y = 1/2
3. tìm 2 số hữu tỉ x và y sao cho x - y = x . y = x : y ( y \(\ne\)0 )
4. tìm các số hữu tỉ x, y, z bt rằng :
x . ( x + y + z ) = -5
y . ( x + y + z ) = 9
z . ( x + y + z ) = 5
tìm x,y,z bt:
a) x+1/5 = (3y-2)/7 = (2x+3y-1)/6x
b) 1/x + 1/y + 1/z = 3 và 2x=-3y=4z
Tìm x,y,z bt
\(1.\dfrac{x}{3}=\dfrac{y}{6};4x-y=42\)
\(2.\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5};x-2y+3z=33\)
\(3.\dfrac{x}{y}=\dfrac{6}{5};x+y=121\)
1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)
mà 4x-y=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)
=>\(x=7\cdot3=21;y=6\cdot7=42\)
2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x-2y+3z=33
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)
=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)
3: \(\dfrac{x}{y}=\dfrac{6}{5}\)
=>\(\dfrac{x}{6}=\dfrac{y}{5}\)
mà x+y=121
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)
=>\(x=11\cdot6=66;y=11\cdot5=55\)