Giải phương trình \(x^2+2017x-2016=2\sqrt{2019x-2018}\)
Tìm các giá trị của x
\(x^2+2017x-2016=2\sqrt{2019x-2018}\)
Giải phương trình: \(2017\sqrt{2017x-2016}+\sqrt{2018x-2017}=2018\)
ĐK: \(x\ge\frac{2017}{2018}\)
\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)
\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)
Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Giải phương trình \(2016.x^2+2017x-2018=0\)
\(\Delta=b^2-4ac=2017^2-2016.\left(-2018\right)=20341441>0\)
=> Phương trình có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-2017-\sqrt{20341441}}{4032}\\x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-2017+\sqrt{20341441}}{4032}\end{cases}}\)
k mình nha bn thanks
Giải phương trình : \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
Giải phương trình: \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
N(x)= \(^{^{x^{2018}}-2019x^{2017}+2019x^{2016}+...+2019x^2+2019x+2018}\)
tính N(2018)
Giải phương trình: \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
Pt tương đương:2015x-2014-2\(\sqrt{2017x-2016}\)=-X^2<=>2017x-2016-2\(\sqrt{2017x-2016}\)+1-2x+2-1=-X^2
<=>2017x-2016-2\(\sqrt{2017x-2016}\)+1=-x^2+2x-1
<=>(\(\sqrt{2017x-2016}\)-1)^2=-(x-1)^2
Rồi đánh giá(\(\sqrt{2017x-2016}\)-1)^2>=0
-(x-1)^2=<0 ( Ta thấy chỉ xảy ra khi bằng 0)
=>x-1=0<=>x=1
cho đa thức E(x)=\(x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\). Tính E(2018)
\(E\left(x\right)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)
Vì \(E\left(2018\right)\) nên :
\(\Rightarrow E\left(x\right)=2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018+1\)
Tới đoạn này thì ghi dấu "=" rồi tính và làm tương tự
Lời giải
Ta có:
\(E(x)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)
\(E(x)=(x^{2018}-2018x^{2017})-(x^{2017}-2018x^{2016})+(x^{2016}-2018x^{2015})-....+(x^2-2018x)-x+1\)
\(E(x)=x^{2017}(x-2018)-x^{2016}(x-2018)+x^{2015}(x-8)-...+x(x-2018)-x+1\)
\(E(x)=(x-2018)(x^{2017}-x^{2016}+x^{2015}-...+x)-x+1\)
Suy ra \(E(2018)=-2018+1=-2017\)
Cho \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\)
Tính A tại x = 2018
Thay x = 2018 vào \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\) ta được
\(2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018-1\)
\(=\)\(2018^{2018}-2019\left(2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\right)-1\)
Đặt \(B=2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\)
\(2018B=2018^{2018}-2018^{2017}+2018^{2016}-...-2018^3+2018^2\)
\(2018B+B=\left(2018^{2018}-2018^{2017}+...+2018^2\right)+\left(2018^{2017}-2018^{2016}+...+2018\right)\)
\(2019B=2018^{2018}-2018\)
\(B=\frac{2018^{2018}-2018}{2019}\)
\(\Rightarrow\)\(A=2018^{2018}-2019.B-1\)
\(\Rightarrow\)\(A=2018^{2018}-\frac{2019\left(2018^{2018}-2018\right)}{2019}-1\)
\(\Rightarrow\)\(A=2018^{2018}-\left(2018^{2018}-2018\right)-1\)
\(\Rightarrow\)\(A=2018^{2018}-2018^{2018}+2018-1\)
\(\Rightarrow\)\(A=2018-1\)
\(\Rightarrow\)\(A=2017\)
Vậy giá trị của \(A=2017\) tại \(x=2018\)
Chúc bạn học tốt ~