Cho△ABC, đường cao Ah. Gọi D,E,F lần lượt là trung đ' của các đoạn thẳng BC, CA, AB
a, CM: A & H đối xứng vs nhau qua đường thẳng È
b, CM: tứ giác HDEF là h/thang cân vs AC > AB
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho△ABC, đường cao Ah. Gọi D,E,F lần lượt là trung đ' của các đoạn thẳng BC, CA, AB
a, CM: A & H đối xứng vs nhau qua đường thẳng È
b, CM: tứ giác HDEF là h/thang cân vs AC > AB
a: Ta có: ΔHAB vuông tại H
mà HF là đường trung tuyến
nên HF=AF(1)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AE(2)
Từ (1) và (2) suy ra FE là đường trung trực của AH
hay A và H đối xứng nhau qua FE
b: Xét ΔABC có F,E lần lượt là trung điểm của AB và AC
nên FE là đường trung bình
=>FE//BC
hay FE//HD
Xét ΔBAC có F,D lần lượt là trun điểm của BA và BC
nên FD là đường trung bình
=>FD=AC/2=HE
Xét tứ giác HDEF có FE//HD và FD=HE
nên HDEF là hình thang cân
cho tam giác ABC vuông tại A (AB>AC) đường cao AH , trung tuyến AM. Gọi N và E lần lượt là trung điểm của AC,AB
a, tứ giác MENH là hình gì? vì sao
b, CM: HE vuông góc HN
c, Từ A kẻ đường thẳng song song với BC cắt ME và MN lần lượt ở K và F . Tứ giác AMBK là hình gì? vì sao
d, Tam giác ABC cần đk gì thì tứ giắc AFCM là hình vuông
Cho tam giác ABC có AH là đường cao. Gọi E và F lần lượt là trung điểm của AB và AC. đoạn thẳng AHI. điểm của a)Biết BC = 6 cm, Tỉnh độ dài EF. b)Đoạn thẳng EF cắt AH tại I. Chứng minh: I là trung điểm AH
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giáo ABC, các tiếp điểm trên BC, CA, AB lần lượt là D,E,F. Gọi M là trung điểm của AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của tam giác ABC tại P. Chứng minh tam giác ANP là tam giác cân.
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm BC, CA, AB lần lượt là D, E, F. Gọi M là trung điểm AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của △ABC tại P.
Chứng minh rằng tam giác APN là tam giác cân
(Đề hay quá!)
Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).
Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).
Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).
Áp dụng định lí Thales liên tục ta có:
\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).
Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.
ê,chứng minh AI,DF,MX đồng quy kiểu gị ?
Cho tam giác ABC có AC>AB, đường cao AH. Gọi D, E, F lần lượt là trung điểm của BC, CA, AB
a) CM A và H là điểm đối xứng nhau qua E, F
b) CM tứ giác HDEF là hình thang cân
cho tam giác ABC( AB<AC<BC), đường cao AH. Gọi D,E,F lần lượt là trung điểm của AB,BC,AC. Gọi I là giao điểm 2 đường chéo của DF và AE
a) CM: DFEH là hình thang cân
b) CM: I là trung điểm của DF
Bạn vẽ hình giúp mình nhé!
a. Cm: DFEH là hình thang cân
Xét tam giác AHC vuông tại H có HF là đường trung tuyến ứng với cạnh huyền.
\(\Rightarrow HF=\dfrac{AC}{2}\left(1\right)\)
Xét tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\BE=EC\end{matrix}\right.\)
\(\Rightarrow\)DE là đường trung bình trong tam giác ABC
\(\Rightarrow\) \(DE=\dfrac{AC}{2}\left(2\right)\)
Lại có: Tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\AF=FC\end{matrix}\right.\) \(\Rightarrow\)DF là đường trung bình của tam giác ABC
\(\Rightarrow\) DF//BC
\(\Rightarrow\) Tứ giác DFEH là hình thang (3)
Từ (1),(2), và (3) suy ra: DFEH là hình thang cân.
b. Cm: I là trung điểm của DF
Ta có: DFEH là hình thang cân
\(\Rightarrow DE=HF=\dfrac{AC}{2}=AF\)
Mà DE//AC \(\Rightarrow\) DE//AF
\(\Rightarrow\)Tứ giác AFED là hình bình hành
Mà \(I=DF\cap AE\)
\(\Rightarrow\) I là trung điểm của DF
cho tam giác ABC có AB<AC đường cao AH .gọi 3 điểm D,E,F lần lượt là trung điểm của AB,AC,BC
a, tứ giác BDEF là hình gì?
b, CM tứ giác DEFK là hình thang cân
c, Gọi H là trực tâm của tam giác ABC. M,N,P theo thứ tự là trung điểm của HA,HB,HC .CM các đoạn thẳng MF,NE,PD bằng nhau và cắt nhau tại trung điểm của mỗi đường
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH