Những câu hỏi liên quan
SB
Xem chi tiết
NT
1 tháng 7 2018 lúc 9:14

M = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)

=> 3M = \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)

=> 3M - M = ( \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)  ) - ( \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\))

2M = 1 - \(\frac{1}{6561}\)

2M = \(\frac{6560}{6561}\)

=> M = \(\frac{3280}{6561}\)

Bình luận (0)
HN
1 tháng 7 2018 lúc 9:11

\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+.......+\frac{1}{6561}\)

\(\Rightarrow M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\)

\(\Rightarrow3M=3\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\right)\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+............+\frac{1}{3^7}\)

\(\Rightarrow3M-M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..........+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-.......-\frac{1}{3^8}\)

\(\Rightarrow2M=1-\frac{1}{3^8}\)

\(\Rightarrow M=\frac{1-\frac{1}{3^8}}{2}\)

Vậy M = \(\frac{1-\frac{1}{3^8}}{2}\)

Bình luận (0)
VN
1 tháng 7 2018 lúc 9:17

\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)

\(\Rightarrow3M=3\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\right)\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{6561}\right)\)

\(\Rightarrow2M=1-\frac{1}{6561}\)

\(\Rightarrow2M=\frac{6560}{6561}\)

\(\Rightarrow M=\frac{3280}{6561}\)

Bình luận (0)
H24
Xem chi tiết
CT
6 tháng 7 2015 lúc 21:16

ta có :

= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )

= 59050 + 2190 + 6570 + 270 + 810

= 59050 + ( 2190 + 810 ) + 6570 + 270

= 59050 + 3000 + 6570 + 270

= 59050 + ( 3000 + 6570 ) + 270

= 59050 + 9570 + 270

= 68620 + 270

= 68890

Bình luận (0)
NM
21 tháng 7 2017 lúc 10:23

68890

Bình luận (0)
TG
22 tháng 6 2019 lúc 13:24

Kết quả là 68890

Nhớ trả lời cho mình

Bình luận (0)
H24
Xem chi tiết
DM
Xem chi tiết
PT
8 tháng 5 2015 lúc 20:26

Cho \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)

    \(\frac{1}{3}A=\frac{1}{3}\times\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\right)\)

    \(\frac{1}{3}A=\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{19683}\)

 \(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right)-\left(\frac{1}{9}+\frac{1}{27}+...+\frac{1}{19683}\right)\)

\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{19683}\)

\(A=\frac{4840}{9683}:\frac{2}{3}=\frac{7260}{9683}\)

 

Bình luận (0)
NQ
Xem chi tiết
TN
14 tháng 8 2017 lúc 16:20

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)

\(\Rightarrow3A=3.\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\) \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)

\(\Rightarrow2A=1-\frac{1}{3^8}\) \(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)

k cho mik đi mn!Nguyễn Như Quỳnh!

Bình luận (0)
ES
Xem chi tiết
NT
14 tháng 8 2023 lúc 11:42

\(A=\dfrac{3}{5.6}+\dfrac{3}{6.7}+...+\dfrac{3}{91.92}\)

\(\Rightarrow A=3\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{91.92}\right)\)

\(\Rightarrow A=3\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{92}\right)\)

\(\Rightarrow A=3\left(\dfrac{1}{5}-\dfrac{1}{92}\right)\)

\(\Rightarrow A=3.\dfrac{87}{460}=\dfrac{261}{460}\)

Bình luận (0)
TP
Xem chi tiết
ZN
14 tháng 3 2023 lúc 20:19

\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}\)

Lấy 3A - A ta được :

\(2A=1-\dfrac{1}{6561}=\dfrac{6560}{6561}\Leftrightarrow A=\dfrac{6560}{6561}:2\)

\(\Leftrightarrow A=\dfrac{6560}{6561}.\dfrac{1}{2}=\dfrac{3280}{6561}\)

Bình luận (0)
HL
Xem chi tiết
HS
30 tháng 3 2019 lúc 20:29

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}\)

\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)

\(3A-A=\left[1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right]-\left[\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right]\)

\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)

\(A=\frac{6560}{6561}:2\)

\(A=\frac{3280}{6561}\)

Vậy : ...

Bình luận (0)
OK
Xem chi tiết
H9
9 tháng 7 2023 lúc 10:35

\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)

\(3B=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{6561}\right)\)

\(3B=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)

\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)

\(2B=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{6561}\right)\)

\(2B=0+0+...+1-\dfrac{1}{6561}\)

\(2B=1-\dfrac{1}{6561}\)

\(B=\left(1-\dfrac{1}{6561}\right):2\)

\(B=\dfrac{6560}{6561}:2\)

\(B=\dfrac{3280}{6561}\)

Bình luận (0)
HK
9 tháng 7 2023 lúc 11:00

{3280}{6561}

Bình luận (0)
H24
10 tháng 10 2023 lúc 17:52

\(\)

Bình luận (0)