Giải pt: \(\frac{|x|\sqrt{x^2+1}-x^2-3+2\sqrt{2}}{|x|\sqrt{x^2+1}+x^2+3-2\sqrt{2}}=x^2\)
Giải pt: \(x+\sqrt[3]{x^3-x^2}+\sqrt[3]{x^3-x}=\sqrt[3]{x^2+x+\frac{1}{3}}+\sqrt[3]{x^2+\frac{1}{3}}+\sqrt[3]{x+\frac{1}{3}}\)
Giải pt
\(\sqrt{2x+\frac{2013-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)
Giải pt: \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
Giải pt \(\frac{1}{\sqrt{x-1}+\sqrt{x-2}}+\frac{1}{\sqrt{x-2}+\sqrt{x-3}}+...+\frac{1}{\sqrt{x-9}+\sqrt{x-10}}=1\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
Giải PT sau: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\frac{x+3}{2}\)
giải pt \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2003}-\sqrt[3]{x+1}\)
giải pt \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)
đặt đúng theo thứ tự đề bài là a;b;c;d(a;c>0)
\(\Rightarrow a^2+b^3=c^2+d^3\)
theo đề bài ta có: a-b=c-d=>a-c=b-d
ta đc hpt:\(\int^{a^2+b^3=c^2+d^3}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d^2+bd+b^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c+b^2+b+d^2\right)=0\left(1\right)}_{a-c=b-d}\)
\(b^2+bd+d^2=\left(b+\frac{1}{2}d\right)^2+\frac{3}{4}d^2\ge0\)
Dấu "=" xảy ra <=> b=d=0
vì a;c>0 nên a+c>0
Dấu "=" xảy ra <=> a=c=0
=> \(a+c+b^2+bc+d^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=d=0 -> vô nghiệm
Từ (1) => a=c rồi tự làm tiếp
Giải phương trình ra nhé phantuananh
Đặt a,b,b,c theo thứ tự nhé
\(a-b=c-d;a^2+b^3=c^2+d^3\)
\(a-c=b-d;\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c+b^2+bd+d^2\right)=0\)
\(a-c=0\)vì cái kia >0 nhưng dấu "=" xảy ra không đồng thời với giác trị của x
Tự giải tiếp
\(\)
Giải pt:
\(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)