CMR (1+7+7^2+7^3+...+7^101) chia hết cho 8
CMR (1+7+7^2+7^3+...+7^101) chia hết cho 8
\(1+7+7^2+7^3+...+7^{101}\\=(1+7)+(7^2+7^3)+(7^4+7^5)+...+(7^{100}+7^{101})\\=8+7^2\cdot(1+7)+7^4\cdot(1+7)+...+7^{100}\cdot(1+7)\\=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\\=8\cdot(1+7^2+7^4+...+7^{100})\)
Vì \(8\cdot\left(1+7^2+7^4+...+7^{100}\right)⋮8\)
\(\Rightarrowđpcm\)
\(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\)
CMR: 70+7^1+7^2+7^3+...+7^101 chia hết cho 8
CMR: 4+4^2+4^3+4^4+...+4^16 chia hết cho 5
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
cho M=1+7+7^1+7^2+7^3+.....+7^101 chứng minh M chia hết cho 8
\(M=1+7+7^1+7^2+...+7^{101}\)
\(=\left(1+7\right)+7\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7+...+7^{100}\right)⋮8\)
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
a) chứng minh rằng A = 1+4+4^2+4^3+......4^2012 chia hết cho 21
b)chứng minh rằng A=1+7+7^2+7^3+............+7^101 chia hết cho 8
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
chứng minh B = 1 + 7 + 7^2 + 7^3 + ... + 7101 chia hết cho 8
2/B=2^100+2^99+2^98+2^97+...+2^1+2^0 CMR(B+2^101)CHIA HẾT CHO 3
3/A=7^0+7^1+7^2+7^3+...+7^2013
A/THU GỌN A
B/CMR Ax6+2015^0+7^2014
C/CMR A CHIA HẾT CHO 8
4/C=3^1+3^3+3^5+3^7+...+3^2013
A/THU GỌN C
B/CMR Cx8+3=3^2015
C/(C+3^2015)CHIA HẾT CHO 10
5/D=8^0+8^1+8^2+8^3+...+8^211
A/THU GỌN D
B/CMR 7xD+9876543210^0=8^2012
C/CMR D CHIA HẾT CHO 9
6/
A/VẼ HÌNH THEO CÁC CÁCH DIỄN ĐẠT SAU.LẤY 4 ĐIỂM A,B,C,D TRONG ĐÓ B NẰM GIỮA A VÀ C CÒN D NẰM NGOÀI ĐƯỜNG THẲNG AC.KẺ CÁC ĐƯỜNG THẲNG ĐI QUA 2 TRONG 4 ĐIỂM A,B,C,D
B/CÓ BAO NHIÊU ĐƯỜNG THẲNG PHÂN BIỆT TRONG HINHG VỮ.VIẾT TÊN CÁC ĐƯỜNG THẲNG ĐÓ
Câu 2;3;4 dễ quá... bỏ qua!!
Câu 5;6 khó quá ... khỏi làm!!
dễ quá bỏ qua!!, khó quá khỏi làm!!
cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1