1+2+3+4+...........+4019
Tính 1-2+3-4+5-6+........+4019-4020
1 - 2 + 3 - 4 + ............ + 4019 - 4020 (4020 số)
= (1 - 2) + (3 - 4) + ......... + (4019 - 4020) [2010 cặp]
= (-1) + (-1) + ............ + (-1)
= (-1) . 2010
= -2010
=(-1)+(-1)+(-1)+.....+(-1) (có 2010 số nguyên -1) =(-1)*2010 =-2010
Đặt S = 1 - 2 + 3 - 4 + 5 - 6 + ........... + 4019 - 4020
S = ( 1 - 2 ) + ( 3 - 4 ) + ( 5 - 6 ) + ......... + ( 4019 - 4020 )
S = ( -1 ) + ( -1 ) + ( -1 ) + .......... + ( -1 )
( có 2010 số hạng ( -1 ) )
S = ( -1 ) . 2010
S = -2010
CMR:3/12.22+5/22+32+7/32+42+.....+4019/20092+20102<1
CMR: 3/12+22+5/22+32+7/32+42+.....+4019/20092+20102 < 1
C/m 3/1*1+2*2+5/2*2+3*3+...+4019/2009*2009+2010*2010<1
CMR: A= 3/1.2^2+5/2^2.3^2+...+4019/2010^2.2009^2<1
CMR :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+......+\dfrac{4019}{2009^2.2010^2}< 1\)
Ta có:
(n+1)2-n2=2n+1=n+(n+1)
=> A=\(\frac{2+1}{2^21^2}+\frac{2+3}{2^23^2}+... +\frac{2009+2010}{2009^22010^2}=1-\frac{1}{2^2}+\frac{1}{2^2} -\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2} <1 \)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{4019}{2009^2.2010^2}\)
3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+4019/2009^2.2010^2
=3/1.4+5/4.9+7/9.16+...+4019/4036081.4040100
= 1/1-1/4+1/4-1/9+1/9-1/16+...+1/4036081-1/4040100
= 1/1-1/4040100
= 1-1/4040100 < 1
Chúc bạn học tốt!
\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)so sánh vói 1
\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)
\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)
\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)
\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)
\(M=1-\frac{1}{2010^2}< 1\)
Vậy \(M< 1\)
Chúc bạn học tốt ~
Chứng minh rằng:
a)3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4019/2009^2.2010^2 < 1
b) (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2