Những câu hỏi liên quan
NL
Xem chi tiết
ZZ
19 tháng 2 2019 lúc 15:30

\(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)

\(=\frac{3-1}{3}+\frac{9-1}{9}+\frac{27-1}{27}+...+\frac{3^n-1}{3^n}\)

\(=\left(\frac{3}{3}-\frac{1}{3}\right)+\left(\frac{9}{9}-\frac{1}{9}\right)+\left(\frac{27}{27}-\frac{1}{27}\right)+.....+\left(\frac{3^n}{3^n}-\frac{1}{3^n}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^n}\right)\)

Bây giờ ta chỉ cần chứng minh:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^n}< \frac{1}{2}\) là xong!

Thật vậy:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{n-1}}\)

\(\Rightarrow2B=1-\frac{1}{3^n}\)

\(\Rightarrow B=\frac{1}{2}-\frac{\frac{1}{3^n}}{2}< \frac{1}{2}\) 

Ta có:\(A=n-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^n}\right)\)

\(>n-\frac{1}{2}\left(đpcm\right)\)(bất đẳng thức đổi chiều)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
LH
23 tháng 6 2016 lúc 8:07
cho A= 2/3+8/9+26/17+...+3^n-1/3^n n-A= 1/3+1/3^2+1/3^3+...+1/3^n 3(n-A)= 3+1/3+1/3^2+..+1/3^n-1 3(n-A)-(n-A)=1-1/3^n 2(n-A)=1-1/3^n n-A=1/2-2/3^n<1/2 =>n-A<1/2 => A
Bình luận (0)
OP
25 tháng 6 2016 lúc 16:02

cho A=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)

=> n-A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

=>\(3\left(n-A\right)\)=\(1\)\(+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{3n-1}}\)

=> \(3\left(n-A\right)-\left(n-A\right)=2\left(n-A\right)=1-\frac{1}{3^n}\)

=>\(2\left(n-A\right)< 1\)

=>\(n-A< \frac{1}{2}\)

=> \(A< n-\frac{1}{2}\)

Deu la tui het do

Bình luận (0)
NC
1 tháng 1 2018 lúc 21:30

Sao lại là n-A thế bạn? n đã tìm đc đâu

Bình luận (0)
H24
Xem chi tiết
NL
31 tháng 7 2020 lúc 20:54

\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)

\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)

\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)

\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)

\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)

\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
LD
30 tháng 3 2017 lúc 22:35

Khó dữ vậy!!!!

Bình luận (0)
TL
6 tháng 5 2017 lúc 14:49

Đợi tí , mạng chậm

Bình luận (0)
TL
6 tháng 5 2017 lúc 21:54

Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(6A-2A< 3-\frac{1}{3^{99}}< 3\)

\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)

Bình luận (0)
NL
Xem chi tiết
P6
Xem chi tiết