cho hai số hữu tỉ a và b thỏa mãn a-b=2(a+b)=a/b
Cho a và b là hai số hữu tỉ thỏa mãn ab < 0 và |a| = |b|. Khi đó a phần b = ???
1. Có tồn tại hay không hai số dương thỏa mãn:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
2. Cho hai số hữu tỉ a và b thỏa mãn: a - b = 2( a + b ) =.\(\frac{a}{b}\) Chứng minh a = - 3b.
3. Cho hai số hữu tỉ a và b thỏa a + b = ab = \(\frac{a}{b}\)
1/Chứng minh \(\frac{a}{b}\) = a - 1
2/Chứng minh b = -1
3/Tìm a
Cho 2 số hữu tỉ a và b thỏa mãn a+b=a.b =a/b Chứng minh a/b=a-1
a+b = a.b = a/b
Cho a/b = a-1
=> a+b = a-1 = a.b = a/b
=> a+(-1) = a+b = a.b = a/b
=> b = -1
a-1 = a.b = a/b
Chúc bạn học tốt!!!
Tick cho mình nha
Cho hai số hữu tỉ a và b thỏa mãn: a - b = 2 (a + b ) = \(\frac{a}{b}\)
1. Chứng minh a = -3b
2. Tính tỉ số \(\frac{a}{b}\)
3. Tìm a và b
Cho hai số hữu tỉ a, b thỏa mãn |a + b| = |a − b|. Chứng minh a = 0 hoặc b = 0.
\(\left|a+b\right|=\left|a-b\right|\)
\(\Rightarrow\orbr{\begin{cases}a+b=a-b\\a+b=-\left(a-b\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a-a=-b-b\\a+b=-a+b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0=-2b\\a+a=b-b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=0\\2a=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=0\\a=0\end{cases}}\)
Cho 3 số hữu tỉ a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\). CM: \(A=\sqrt{a^2+b^2+c^2}\) là số hữu tỉ
Cho a;b;c;d là các số nguyên dương và thỏa mãn: (a/b)<(c/d). tìm một số hữu tỉ x sao cho (a/b)<x<(c/d), từ đó chúng minh rằng ta có thể tìm được các số hữu tỉ khác nhau nằm giữa hai số 1 và 2 (khi biểu diễn trên trục số) mà tổng của chúng lớn hớn 2023 (giải theo trình độ lớp 7)
cho a,b,c là 3 số hữu tỉ thỏa mãn : 1/a+1/b=1/c.Chứng minh rằng a^2+b^2+c^2 là bình phương 1 số hữu tỉ
Cho a, b là số hữu tỉ dương thỏa mãn a^5 + b^5 = 2(ab)^2. Chứng minh √(1 - ab) là số hữu tỉ (