So sánh
A=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{50}}\)với 1
Cho góc lượng giác \(\alpha \). So sánh
a) \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\) và 1
b) \(\tan \alpha .\cot \alpha \,\,\) và 1 với \(\cos \alpha \ne 0;\sin \alpha \ne 0\)
c) \(1 + {\tan ^2}\alpha \,\,\) và \(\frac{1}{{{{\cos }^2}\alpha }}\) với \(\cos \alpha \ne 0\)
d) \(1 + {\cot ^2}\alpha \,\) và \(\frac{1}{{{{\sin }^2}\alpha }}\) với \(\sin \alpha \ne 0\)
a) \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\)
b) \(\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)
c) \(\frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)
so sánh \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{2}{2^{49}}+\frac{2}{2^{50}}\)với 1
2A=1+1/2+................+1/2^49+1/2^50
A=1+1/2^50=> A>1
A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
So sánh A với 2
tinh 2A ROI RUT GON .ROI LAY 2A tru di A THI RA KET QUA
le đinh dat chỉ bậy tính thế thì ai tính ko được mà céc cũng phải mất 1 ngày mứ ra kiểu tính mò nớ đó
Cho day phan so:
\(\frac{1}{1};\frac{1}{2};\frac{2}{1};\frac{1}{3};\frac{2}{2};\frac{3}{1};\frac{1}{4};\frac{2}{3};\frac{3}{2};\frac{4}{1}\)
Tim ra phan so 50 cua day so tren
\(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{50^2}\right)\) So sánh P với \(\frac{1}{2}\)
Ta có:
\(P=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{2500}\right)\)
\(P=\frac{3}{4}.\frac{8}{9}...\frac{2499}{2500}\)
\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{49.51}{50.50}\)
\(P=\left(\frac{1}{2}.\frac{2}{3}...\frac{49}{50}\right).\left(\frac{3}{2}.\frac{4}{3}...\frac{51}{50}\right)\)
\(P=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}\)
Ta có:
P=(1−14)(1−19)...(1−12500)P=(1−14)(1−19)...(1−12500)
P=34.89...24992500P=34.89...24992500
P=1.32.2.2.43.3...49.5150.50P=1.32.2.2.43.3...49.5150.50
P=(12.23...4950).(32.43...5150)P=(12.23...4950).(32.43...5150)
P=150.512=51100
Cho B=\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{99}}\) ,So sánh B với 50
=
.;'¬,p¬.¬].¬].¬p.¬;.\=p¬l[;.\pl]¬\/='
-¬'0.0
? crisdevergamemer
Cho \(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\). So sánh P với \(\frac{1}{2}\)
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(P=\frac{1.51}{50.2}\)
\(P=\frac{51}{100}>\frac{1}{2}\)
Kết luận: \(P>\frac{1}{2}\)
Cho B=\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{99}}\),so sánh B với 50
So sánh :
\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)và 1
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}< 1\)
\(\Rightarrow A< 1\)
2. So sánhA=\(\frac{2009^{2009}+1}{2009^{2010}+1}\) VÀ B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)