\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)
Ta có \(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)