Rút gọn biểu thức:
A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3
Rút gọn A = ( x + y + z )3 - ( x + y - z )3 - ( x - y + z )3 - ( -x + y + z )3
A=(x+y)^3+3(x+y)^2*z+3(x+y)*z^2+z^3-(x+y)^3+3(x+y)^2*z^2-3(x+y)*z^2+z^3-(x-y+z)^3+(x-y-z)^3
=6(x+y)^2+2z^3+(x-y)^3-3(x-y)^2*z+3(x-y)*z^2-z^3-(x-y)^3-3*(x-y)^2*z-3*(x-y)*z^2-z^3
=6(x+y)^2+2z^3-6(x-y)^2-2z^3=0
Cho x/a= y/b= z/c với a, b, c, x, y, z không bằng 0
Rút gọn biểu thức B = ( a^2.x + b62.y + c^2.z ) ^3 / x^3 + y^ 3 + z^3
Rút gọn các phân thức sau: a) x^3+y^3+z^3-3xyz/(x-y)^2+(x-z)^2+(y-z)^2 b) (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3/(x-y)^3+(y-z)^3+(z-x)3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
rút gọn biểu thức \(G=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(-x+y+z\right)^3-\left(x-y+x\right)^3\)
Rút gọn C= [ (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3] / [ (x-y)^3 + (y-z)^3 + (z-x)^3 ]
Rút gọn : (x-y)^3+(y-z)^3+(z-x)^3/(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3
Rút gọn: x^3 + y^3 - z^3 - 3xyz / (x - y)^2 + (y - z)^2 + (z - x)^2
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z
A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3
=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)
=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)
1. Cho các số x, y, z thỏa mãn : (x + y)(y + z)(z + x) = 4. CMR: \(\left(x^2-y^2\right)^3\)+ \(\left(y^2-z^2\right)^3\)+ \(\left(z^2-x^2\right)^3\)= 12 (x - y)(y - z)(z - x)
2. Rút gọn: \(\dfrac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\) biết (x + y)(y + z)(z + x) = 1
3. Cho a, b, c ≠ 0 thỏa mãn: a + b + c = \(a^2+b^2+c^2\) = 2. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
MONG MN GIẢI GIÚP EM Ạ!!! EM ĐANG CẦN GẤP ! CẢM ƠN MN NHIỀU
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Bài 3:
\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)
Do đó:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)
Ta có đpcm.