Rút gọn:
(2x-1)(4x^2-3x+1)+(2x+1)(4x^2+3x+1)
Rút gọn
a, (3x+2).(3x+2) - (3x+1)\(^2\)
b, (1-4x\(^2\)).(1+4x\(^2\))-(2x+3)\(^2\)
a) \(\left(3x+2\right)\left(3x+2\right)-\left(3x+1\right)^2=\left(3x+2\right)^2-\left(3x+1\right)^2=\left(3x+2-3x-1\right)\left(3x+2+3x+1\right)=1.\left(6x+3\right)=6x+3\)
b) \(\left(1-4x^2\right)\left(1+4x^2\right)-\left(2x+3\right)^2=1-16x^4-4x^2-12x-9=-16x^4-4x^2-12x-8\)
a: \(\left(3x+2\right)\left(3x+2\right)-\left(3x+1\right)^2\)
\(=9x^4+12x+4-9x^2-6x-1\)
=6x+3
b: \(\left(1-4x^2\right)\left(1+4x^2\right)-\left(2x+3\right)^2\)
\(=1-16x^4-4x^2-12x-9\)
\(=-16x^4-4x^2-12x-8\)
Rút gọn
a, (x-2).(3x-1).(3x+1)-2x.(4x-3)^2
b, ( 5x-7)^2 - ( 4x -3).(2x+3)^2- (x-3).(3x^2-5)
c, (2-5x)^2-4x.(3x+1)^2-(x-3).(x+3)
Rút gọn
a, (x-2).(3x-1).(3x+1)-2x.(4x-3)^2
b, ( 5x-7)^2 - ( 4x -3).(2x+3)^2- (x-3).(3x^2-5)
c, (2-5x)^2-4x.(3x+1)^2-(x-3).(x+3)
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
tính (rút gọn )
2x(3x-1)-(2x+1)(x-3)
3(x^2-2x)-(4x+2)(x-1)
Ta có: \(2x\left(3x-1\right)-\left(2x+1\right)\left(x-3\right)\)
\(=6x^2-2x-\left(2x^2-6x+x-3\right)\)
\(=6x^2-2x-2x^2+5x+3\)
\(=4x^2+3x+3\)
Ta có: \(3\left(x^2-2x\right)-\left(4x+2\right)\left(x-1\right)\)
\(=3x^2-6x-\left(4x^2-4x+2x-2\right)\)
\(=3x^2-6x-4x^2+2x+2\)
\(=-x^2-4x+2\)
\(2x\left(3x-1\right)-\left(2x+1\right)\left(x-3\right)=6x^2-2x-2x^2+5x+3=4x^2+3x+3\)
\(3\left(x^2-2x\right)-\left(4x+2\right)\left(x-1\right)=3x^2-6x-4x^2+2x-2=-x^2-4x-2\)
cậu xem câu hỏi của Quỳnh Phạm nha
Bài 1: Rút gọn
A = (3x - 1) ² + 2(3x -1) (2x+1) + (2x +1) ²
B = (2x +3) (4x ² - 6x + 9) + 8(1 - x) (1 +x +x ²)
A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
A = \(\left(3x-1+2x+1\right)^2\)
A)
<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1
<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)
<=> 25x^2
B)
<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3
<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)
<=> 35
rút gọn các biểu thức sau:
(3x+4)2+(4x-1)2+2x+5(2x-5)
(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)
(3x+4)2 +(4x -1 )2 + 2x + 5(2x-5)
= 9x2+24x+16 + 16x2-8x+1 + 2x + 10x - 25
= 25x2 + 28x - 8
b. (2x+1)(4x2 -2x + 1 ) + ( 2-3x ) ( 4+ 6x + 9x2 )
= 8x3 + 1 + 8-27x3
= -19x3 +9
cho b.thức \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
hãy tính rút gọn rồi tính giá trị của b.thức tại x=\(\dfrac{1}{966}\)
Đặt `A=(1-3x)/(2x)+(3x-2)/(2x-1)+(3x-2)/(2x-4x^2)`
`=(2x(3x-2))/(2x(2x-1))-((3x-1)(2x-1))/(2x(2x-1))-(3x-2)/(2x(2x-1))`
`=(6x^2-4x-6x^2+5x-1-3x+2)/(2x(2x-1))`
`=(-2x+1)/(2x(2x-1))`
`=-1/(2x)`
`2x=1/(483)`
`=>A=-1/(1/483)=-483`
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
⇔\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x\left(1-2x\right)}\)
⇔\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{(3x-2)}{2x\left(2x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x\ne0\\2x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\2x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
MTC: 2x(2x-1)
\(\dfrac{1-3x\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{(3x-2)(2x)}{(2x-1)(2x)}-\dfrac{(3x-2)}{2x\left(2x-1\right)}\)
\(\Rightarrow1-3x\left(2x-1\right)+\left(3x-2\right)\left(2x\right)-\left(3x-2\right)\)
\(\Leftrightarrow1-6x^2+3x+6x^2-4x-3x+2\\ \Rightarrow-4x+3\)
Thay \(x=\dfrac{1}{966}\)vào biểu thức trên
ta có -4x+3= \(-4\times\dfrac{1}{966}+3=\dfrac{-4}{966}+3=\dfrac{-2}{483}+3=\dfrac{-2}{483}+\dfrac{1449}{483}=\dfrac{1447}{483}\)
Cho biểu thức: 1-3x/2x+3x-2/2x-1+3x-2/2x-4x^2
Rút gọn rồi tính giá trị của biểu thức tại x =1/432
Bài 3: Cho hai đa thức:
P(x)= \(2x^3-2x+x^2+3x+2\)
Q(x)= \(4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
a) Rút gọn P(x),Q(x)
b) Chứng tỏ x=-1 là nghiệm của P(x),Q(x)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
a, `P(x) = 2x^3 + x^2 + x + 2`.
`Q(x) = x^3 + x^2 + x + 1`.
`P(-1) = 0`
`Q(-1) = 0`
`=>` `-1` là nghiệm chung của `2` đa thức trên.