Tim x biet:
a)(2x . 6). (3x-18)=0
B)25+(15-x)=30
tim so nguyen x
(3x+9).(3x-6)=0(2x+15)-25=47-(10-x)30(x=2)-6(x-5)-24x=100/4-3x/=8/2x-5/=13/7x+3/=661) (3x + 9)(3x - 6) = 0
=> \(\orbr{\begin{cases}3x+9=0\\3x-6=0\end{cases}}\)
=> \(\orbr{\begin{cases}3x=-9\\3x=6\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy ...
b) (2x + 15) - 25 = 47 - (10 - x)
=> 2x - 10 = 37 + x
=> 2x - x = 37 + 10
=> x = 47
3, tương tự
4) |4 - 3x| = 8
=> \(\orbr{\begin{cases}4-3x=8\\4-3x=-8\end{cases}}\)
=> \(\orbr{\begin{cases}3x=-4\\3x=12\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{4}{3}\\x=4\end{cases}}\)
Vì x là số nguyên nên ...
còn lại tương tự
Cau 3 (2 diem). Tim so tu nhien x, biet:
a. 123 - x =38
b. (x+15) - 7 =33
c. 3x+3 - 13=230
`123-x=38`
`=> x= 123-38`
`=>x=85`
Vậy `x=85`
__
`(x+15) -7=33`
`=>x+15=33+7`
`=>x+16= 40`
`=>x=40-16`
`=>x=24`
Vậy `x=24`
__
`3^(x+3) -13=230`
`=> 3^(x+3) = 230+13`
`=>3^(x+3)=243`
`=> 3^(x+3)=3^5`
`=> x+3=5`
`=>x=5-3`
`=>x=2`
Vậy `x=2`
tim x
a) 3x-15=25-5x
b) 2x-17=-(3x-18)
a) \(3x-15=25-5x\)
\(\Leftrightarrow\)\(3x+5x=25+15\)
\(\Leftrightarrow\)\(8x=40\)
\(\Leftrightarrow\)\(x=5\)
Vậy....
b) \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow\)\(2x-17=-3x+18\)
\(\Leftrightarrow\)\(2x+3x=18+17\)
\(\Leftrightarrow\)\(5x=35\)
\(\Leftrightarrow\)\(x=7\)
Vậy.....
a) 3x-15=25-5x
3x+5x=25+15
8x=40
x=40/8
Vậy x=5
b)2x-17=-(3x-18)
2x-17=-3x+18
2x+3x=18+17
5x=35
x=35/5
Vậy x=7
tim x nguyen biet:
a 8.(x mu 2 +3).(5-x)
b)(2x + 1)mu 2=25
c) (1-3x)mu3 =64
d)(4-x)mu3 =-27
e) xmu2 -5x =0
b: \(\left(2x+1\right)^2=25\)
=>\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left(1-3x\right)^3=64\)
=>\(\left(1-3x\right)^3=4^3\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1
d: \(\left(4-x\right)^3=-27\)
=>\(\left(4-x\right)^3=\left(-3\right)^3\)
=>4-x=-3
=>x=4+3=7
e: \(x^2-5x=0\)
=>\(x\left(x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Tim x, bt:
a) 4.(18- 5x) - 12.( 3x-7) =15.(2x-16) - 6.(x+14)
b) 5.(3x+5) - 4.(2x-3) =5x + 3x(2x-12) +1
a) 4.(18- 5x) - 12.( 3x-7) =15.(2x-16) - 6.(x+14)
72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
-20x - 36x - 30x + 6x = -240 - 84 - 72 -84
-80x = -480
x= 6
4.(18 - 5x) - 12.(3x - 7) = 15.(2x - 16) - 6.(x+14)
4.18 - 4.5x - 12.3x + 12.7 = 15.2x - 15.16 - 6x - 6.14
72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
72 + 84 - 20x - 36x = 30x - 6x - 240 - 84
156 - 56x = 24x - 324
156 = 24x - 324 + 56x
156 = 80x - 324
80x - 324 = 156
80x = 156 + 324
80x = 480
x = 480:80
x = 6
câu b giải tương tự
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
b) 3x (x-1) + x - 1 = 0
c) 2(x+3) - x ² - 3x = 0
d) x(x - 2) + 3x - 6 = 0
e) 4x ² - 4x +1 = 0
f) x +5x ² = 0
g) x ² 2x -3 = 0
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
b) \(\text{3x (x-1) + x - 1 = 0}\)
\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\\\)
\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
c) \(\text{2(x+3) - x ² - 3x = 0}\)
\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Rightarrow\left(2-x\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
d) \(\text{x(x - 2) + 3x - 6 = 0}\)
\(\Rightarrow x(x - 2) + 3(x - 2) = 0\\ \Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e)
\(\text{4x ² - 4x +1 = 0}\\ \Rightarrow\left(2x-1\right)^2=0\\ \Rightarrow2x-1=0\\ \Rightarrow x=0,5\)
f) \(\text{x +5x ² = 0}\)
\(\Rightarrow x\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
viết lại câu g đi bạn
Tím x biết:
a, 461+(x-45)=387
b, 11-(-53+x)=97
c, -(x+84)+213=-16
d, 2. (x-5)-3(x-4)=-6-15.(-3)
e, 15-(4-x)=6
j, -30+(25-x)=-1
g,(2x-5)+17=6
h, 10-2(4-3x)=-4
i,-12+3(-x+7)=-18
k,24:(3x-2)=-3
l,-45:5.(-3-2x)=3
m, 3x+27=9
giúp mik đi mà, gấp lắm, mik phải đi học ngay r, huhuhu
tim x biet:a)/x+1/+/3x-1/+/x-1/=3
b)/x-2/+/x-7/=4
|x+1|+|3x-1|+|x-1|=3
=} vs cả trong dấu giá trị tuyệt đối >0 thì=}
x+1+3x-1+x-1=3{=}5x=4{=}x=4/5
=}vs cả trong giá trị tuyệt đối <0 thì=}
x+1+3x-1+x-1=-3{=}5x=-4{=}x=-4/5