Những câu hỏi liên quan
H24
Xem chi tiết
H24
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Bình luận (0)
MR
Xem chi tiết
H24
5 tháng 8 2016 lúc 1:15

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)

Bình luận (0)
MR
6 tháng 8 2016 lúc 20:44

Có bạn nào có cách giải dễ hiểu hơn không? Giúp mình với!!!

Bình luận (0)
AD
24 tháng 11 2017 lúc 21:13

bđt cô-si đó bạn :)) 

Bình luận (0)
NG
Xem chi tiết
TL
12 tháng 12 2016 lúc 21:55

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

Bình luận (1)
NJ
Xem chi tiết
MA
12 tháng 9 2016 lúc 15:15

\(A=x^2+x\) . Có: \(x^2\ge x\Rightarrow x^2+x\ge0\)

Dấu '=' xảy ra khi: \(x^2+x=0\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy: \(Min_A=0\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Bình luận (0)
MA
12 tháng 9 2016 lúc 15:22

\(B=4x-12x+10\)

\(B=-8x+10\)

\(B=10-8x\)

Xét: \(x< 0\Rightarrow10-8x\ge10\)

Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)

Xét: \(x>0\Rightarrow10-8x\le10\)

Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)

Vậy: Khi x<0. \(Min_B=10\) tại \(x=0\)

Khi: x>0.  \(Max_B=10\)tại \(x=0\)

K chắc

Bình luận (0)
NP
Xem chi tiết
H24
14 tháng 3 2019 lúc 17:33

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

Bình luận (0)
TN
Xem chi tiết
NT
21 tháng 11 2022 lúc 14:35

Bài 1:

a: A=x^2-6x+10

=x^2-6x+9+1

=(x-3)^2+1>=1

Dấu = xảy ra khi x=3

b: \(B=3x^2-12x+1\)

=3(x^2-4x+1/3)

=3(x^2-4x+4-11/3)

=3(x-2)^2-11>=-11

Dấu = xảy ra khi x=2

Bình luận (0)
CR
Xem chi tiết
NQ
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Bình luận (0)
CR
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

Bình luận (0)
NH
Xem chi tiết
H24
5 tháng 8 2018 lúc 14:52

xin ban tk cho mk

Bình luận (0)
TV
Xem chi tiết
GL
26 tháng 4 2019 lúc 17:53

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)

Bình luận (0)