\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2012};B=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)
\(\)
Tính \(\left( \frac{A}{B}\right)^{2013}\)
Giúp mk nha
Ai nhanh mk tk :))
A có chia hết cho 3 không?
\(A=\frac{2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}}\)
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
A = 2013 chia hết cho 3 nhé
\(A=\frac{2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}}\)
hỏi A có chia hết cho 3 hay ko ?
http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Đừng tin bn Thạch bạn ấy nói dối đấy
Chuẩn 100% luôn tik nha
Tính :
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)
Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)
\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)
(2012 số 1) (2011 phân số)
\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
=> \(A=\frac{1}{2013}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(\Rightarrow A=\frac{1}{2013}\)
Vậy \(A=\frac{1}{2013}\)
\(choA=\frac{2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}}.hỏiAchia3dưbaonhiêu\)
A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=2013
Mà 2013: 3 = 671
Vậy A : 3 dư 0 hay\(A⋮3\)
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
94 nếu nháy chuột vào đúng 0 sẽ cho biết đúng hay sai đó bạn
Rút gọn :
a/ \(A=\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)
b/ \(B=\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)...\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{2012}\right)}\)
Rút gọn \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)ta đc A= ?
Rút gọn A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)Ta được A=
Rút gọn A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)Ta được A=...
xét mẫu ta được
(2012/2+1)+(2011/3+1)+...+(1/2013+1)
=2014/2+2014/3+...+2014/2013
=2014(1/2+1/3+...+1/2013) (1)
mà tử bằng 1/2+1/3+1/4+..+1/2013 (2)
(1),(2)=> A=1/2014
xét mẫu
2012+2012/2+2011/3+...+1/2013
=(1+1+1+…+1) + 2012/2+2011/3+...+1/2013
2012 số hạng
=(1 + 2012/2) + (1 + 2011/3) + ….+ (1+1/2013)
=2014/2 + 2014/3 + …. + 2014/2013
=2014 x (1/2 + 1/3 + … + 1/2013)
=))
(1/2+1/3+1/4+...+1/2013)/(2012+2012/2+2011/3+...+1/2013) =
(1/2+1/3+1/4+...+1/2013)/ 2014 x (1/2+1/3+1/4+...+1/2013) = 1/2014