CM các đẳng thức sau
a) (a-b)2=a2-2ab+b2
b)(a+b+c) (a2+b2+c2) - (a.b-a.c-b.c) = a3+b2+c2-3abc
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
chứng minh các đẳng thức sau
(a-b)2=a2-2ab+b2
(a-b)(a+b)=a2-b2
(a+b)3=a3+3a2b+3ab2+b3
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
CM các đẳng thức sau
(a+b+c)(a2+b2+c2)>=9abc
a/b+c +b/c+a + c/a+b >=3/2
Cho a 3 + b 3 + c 3 = 3 a b c và a + b + c ≠ 0.Tính giá trị của biểu thức A = a 2 + b 2 + c 2 ( a + b + c ) 2
A=1
chuẩn
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
\(Chứng minh các bất đẳng thức: a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)\)
a)Ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)
Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)
Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Phân tích thành nhân tử :
a. (a + b)(a2 - b2) + (b - c)(b2 - c2) + (c + a)(c2 - a2)
b. a3 (b - c) + b3(c - a) + c3 (a - b)
c. a3 (c - b2) + b3 (a -c3) + c3 (b - a2) + abc(abc - 1)
d.a ( b + c )2 ( b - c ) + b ( c + a )2 (c - a ) + c ( a + b )2 (a - b )
e. a ( b + c )3 + b ( c - a )3 + c ( a - b )3
f. a2 b2 ( a - b ) + b2 c2 ( b - c ) + c2 a2( c - a )
g. a ( b2 + c2) + b ( c2 + a2 ) + c ( a2 + b2) - 2abc - a3 - b3 - c3
h. a4 ( b - c ) + b4 ( c - a ) + c4 ( a - b )
Phân tích thành nhân tử :
a. (a + b)(a2 - b2) + (b - c)(b2 - c2) + (c + a)(c2 - a2)
b. a3 (b - c) + b3(c - a) + c3 (a - b)
c. a3 (c - b2) + b3 (a -c3) + c3 (b - a2) + abc(abc - 1)
d.a ( b + c )2 ( b - c ) + b ( c + a )2 (c - a ) + c ( a + b )2 (a - b )
e. a ( b + c )3 + b ( c - a )3 + c ( a - b )3
f. a2 b2 ( a - b ) + b2 c2 ( b - c ) + c2 a2( c - a )
g. a ( b2 + c2) + b ( c2 + a2 ) + c ( a2 + b2) - 2abc - a3 - b3 - c3
h. a4 ( b - c ) + b4 ( c - a ) + c4 ( a - b )
Cho b2 = a.c. CM rằng a2 + b2 / b2 + c2 = a/c
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\left(đpcm\right)\)
Thay b2 = ac vào biểu thức trên, ta có:
\(\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
\(\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\left(1\right)\)
Ta có \(b^2=ac\Leftrightarrow\dfrac{ac}{c^2}=\dfrac{b^2}{c^2}\Leftrightarrow\dfrac{a}{c}=\dfrac{b^2}{c^2}\left(2\right)\)
\(\left(1\right)\left(2\right)\LeftrightarrowĐpcm\)
10. Chứng minh các bất đẳng thức :
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).
b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)
. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).
Vậy : (a + b + c)\(^2\) ≤ 3( a\(^2\) + b\(^2\) + c\(^2\)).
Cách khác : Biến đổi tương đương
a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng
b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)