A=(1+2/1.4)x (1+2.5)x(1+3/6)x...x(1+2/100/103)
A=(1+2/1.4)x (1+2.5)x(1+3/6)x...x(1+2/100/103)
Rút gọn biểu thức sau:
\(A=\left(1+\dfrac{2}{1.4}\right).\left(1+\dfrac{2}{2.5}\right).\left(1+\dfrac{2}{3.6}\right).....\left(1+\dfrac{2}{x\left(x+3\right)}\right)\)
Bài 1:
a, A=1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+99-100-101+102+103
b, B=1+(-3)+5+(-7)+...+97+(-99)+101
Bài 2:
a,|x+2|-x=2
b,|x-3|+x-3=0
c, |x+1|+|x+2|=1
d,|x-5|+x-8=6
1
b;
B=1+ (7-5) + (11-9) + ...+(101-99)
B=1+2+2+..+2
B=1+25.2=51
2.
a.
ĐK : x+2 >=0 => x>=-2
\(\left|x+2\right|-x=2\\ \Rightarrow\left|x+2\right|=2+x\\ \Rightarrow\left[{}\begin{matrix}x+2=x+2\\x+2=-x-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\x=-2\end{matrix}\right.\)
Vậy x=-2
2.
d;
\(\left|x-5\right|\)=14-x
\(\Leftrightarrow\left[{}\begin{matrix}x-5=14-x\\x-5=x-14\end{matrix}\right.\)
em giải 2 cái này ra để tìm x
CÂU 1: Tập hợp các số nguyên x thỏa mãn |(x+1)(x^2+8)| = x+1 là {………..}
CÂU 2: Cho hàm số f(x)= ax^2 + bx + c . Biết f(0) =2013 ; f(1) = f(-1) = 2015. Vậy f(2 )= …..
CÂU 3: Biết A = 1.2+2.3+3.4+...+99.100=33300 thì B = 1.4+2.5+3.6+...+99.102 = .........
CÂU 4: Tổng A= a+b+c biết (-5a^2b^4c^6)^7 - (9a^3bc^5)^8 = 0 là A = .......
Rút gọn biểu thức sau:
\(A=\left(1+\dfrac{2}{1.4}\right).\left(1+\dfrac{2}{2.5}\right).\left(1+\dfrac{2}{3.6}\right).....\left(1+\dfrac{2}{x\left(x+3\right)}\right)\)
\(A=\left(\dfrac{6}{1.4}\right)\left(\dfrac{12}{2.5}\right)\left(\dfrac{20}{3.6}\right)\left(\dfrac{x^2+3x+2}{x\left(x+3\right)}\right)\)
\(A=\dfrac{2.3}{1.4}.\dfrac{3.4}{2.5}.\dfrac{4.5}{3.6}...\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+3\right)}\)
\(A=\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{3.4.5...\left(x+2\right)}{4.5.6...\left(x+3\right)}=\left(x+1\right)\dfrac{3}{x+3}=\dfrac{3\left(x+1\right)}{x+3}\)
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{34}{103}\)
Tìm x
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)
\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=\dfrac{1}{103}\)
\(\Rightarrow x+3=103\)
\(x=103-3\)
\(x=100\)
Vậy x = 100
Câu1
( x-7/4)+( x-6/3)+( x-5/2)+( x+81/7)=0
Câu2
( 1/1×101)+( 1/2×102)+( 1/3×103)+(1/10×11×X=(1/1×11)+(1/2×12)+...+(1/100×110)
Câu3
( x-1/2013)+( x-2/2012)+( x-3/2011)+...+( x-2012/2) =2012
Tìm x, biết:
a.(50-6.x).18= 2^3.3^2.5
b.(x+1)+(x+2)+(x+3)+...+(x+100)=7450
Dấu . là nhân, ^ là mũ ạ!
Giúp mình vs! Tks
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24
(x+1)+(x+2)+(x+3)+....(x+100)=7450
=> 100x + (1+2+3...+100)=7450
=> 100x + 5050=7450
=> 100x =7450-5050
=> 100x = 2400
=> x= 24
Bài 6: 1) 3^x+2+4.3^x+1=7.3^6 2)5^x+4-3.5^x+3=2.5^11 3)4^x+3-3.4^x+1=13.4^11
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$