Những câu hỏi liên quan
HP
Xem chi tiết
MN
Xem chi tiết
DH
28 tháng 8 2018 lúc 16:18

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)

                          \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

                        \(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

                          \(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

Vậy S = 19/20

Bình luận (0)
MN
Xem chi tiết
DH
27 tháng 8 2018 lúc 21:24

Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!

Áp dụng vào, ta được:   \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)

                                  \(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)

                                    \(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)

                                           .............................

                                     \(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)

\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)

\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)

\(=2.50=100\)

=> ĐPCM

P/s: sai sót xin bỏ qua cho.

Bình luận (0)
MN
Xem chi tiết
ZZ
26 tháng 3 2020 lúc 14:07

Đặt 

\(A_k=1+2+3+....+k=\frac{k\left(k+1\right)}{2}\)

\(A_{k-1}=1+2+3+....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\)

Ta có:

\(A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2}{2}-\frac{\left(k-1\right)^2k^2}{2}=\frac{k^2}{2}\left(k^2+2k+1-k^2+2k-1\right)=k^3\)

Khi đó:

\(1^3=A_1^2\)

\(2^3=A_2^2-A_1^2\)

\(...........\)

\(n^3=A_n^2-A_{n-1}^2\)

Khi đó:

\(1^3+2^3+3^3+...+n^3=A_n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

\(\Rightarrow\sqrt{1^3+2^3+......+n^3}=\frac{n\left(n+1\right)}{2}\)

=> ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
KS
26 tháng 3 2020 lúc 14:30

Cách khác:

Ta sẽ đi chứng minh \(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với n=1 thì mệnh đề trên đúng

Giả sử mệnh đề trên đúng với n=k ta sẽ chứng minh mệnh đề đúng với n=k+1

Ta có:

\(A_k=1^3+2^3+3^3+.....+k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2\)

Ta cần chứng minh:

\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Thật vậy !

\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\)

\(=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)

\(=\left(k+1\right)^2\left(\frac{k^2}{4}+k+1\right)\)

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Theo nguyên lý quy nạp ta có điều phải chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
MN
26 tháng 3 2020 lúc 20:29

thanks

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
AN
30 tháng 8 2017 lúc 13:40

Đặt:

\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(\Leftrightarrow2A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}\)

\(=\frac{1}{2}.\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)

\(=\frac{1}{2}.\left(\sqrt{101}-\sqrt{1}\right)>\frac{1}{2}.\left(\sqrt{100}-\sqrt{1}\right)\)

\(=\frac{9}{2}\)

\(\Rightarrow A>\frac{9}{4}\)

Bình luận (0)
AN
30 tháng 8 2017 lúc 13:33

Câu 2/ Ta có:

\(n^{n+1}>\left(n+1\right)^n\)

\(\Leftrightarrow n>\left(1+\frac{1}{n}\right)^n\left(1\right)\)

Giờ ta chứng minh cái (1) đúng với mọi \(n\ge3\)

Với \(n=3\) thì dễ thấy (1) đúng.

Giả sử (1) đúng đến \(n=k\) hay

\(k>\left(1+\frac{1}{k}\right)^k\)

Ta cần chứng minh (1) đúng với \(n=k+1\)hay \(k+1>\left(1+\frac{1}{k+1}\right)^{k+1}\)

Ta có: \(\left(1+\frac{1}{k+1}\right)^{k+1}< \left(1+\frac{1}{k}\right)^{k+1}=\left(1+\frac{1}{k}\right)^k.\left(1+\frac{1}{k}\right)\)

\(< k\left(1+\frac{1}{k}\right)=k+1\)

Vậy có ĐPCM

Bình luận (0)
SH
31 tháng 8 2017 lúc 15:25

bằng 122223

Bình luận (0)
HT
Xem chi tiết
AH
31 tháng 10 2019 lúc 18:28

Lời giải:

Liên hợp ta thấy:

\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)

\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)

Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)

------------------------

Áp dụng vào bài toán:

\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)

\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)

Và:

\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)

\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)

Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
VT
12 tháng 9 2016 lúc 9:11

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}...;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)

\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
CT
Xem chi tiết
MT
5 tháng 8 2016 lúc 21:20

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}....;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)

=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)

\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)

Bình luận (0)