cho tam giác vuông tại A, CD là tia phân giác góc C
a, cm góc BDC là góc tù
b, giả sử góc =105 độ.Tính góc B
GIÚP MK VỚI
Cho tam giác ABC, có ^ABC=60 độ. Vẽ AH vuông góc với BC tại H. Trên cạnh AC lấy điểm D sao cho AH=AD.Gọi Ilà trung điểm của HD
Chứng minh rằng: Tam giác AHI=tam giác ADI. Từ đó hãy chỉ ra AI vuông góc với HD
mong mn giúp ạ
Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đo: ΔAHI=ΔADI
=>góc AIH=góc AID=90 độ
=>AI vuông góc với HD
Cho tam giác ABC vuông tại A có góc B =60 độ . Vẽ AH vuông góc vs BC tại H
a. Tính số đo góc HAB
b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD
c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD
a. Tính số đo góc HAB
Trong tam giác HAB vuông tại H, ta có
- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)
b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD
Xét tam giác DIA và tam giác HIA, có
- DI = HI (I là trung điểm DH)
- cạnh IA chung
- AD = AH (giả thiết)
=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)
Ta có AD = AH => tam giác ADH cân tại A
mà I là trung điểm DH
=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH
=> AI vuông góc HD(đpcm)
c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD
Xét tam giác ADK và tam giác AHK, có
- AD = AH (giả thiết)
- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)
- cạnh AK chung
=> tam giác ADK = tam giác AHK
=> góc ADK = góc AHK
mà AHK = 90 độ
=> góc ADK = 90 độ
Ta có góc ADK = 90 độ
=> KD vuông góc AC
mà AB cũng vuông góc AC (do tam giác vuông tại A)
=> AB // KD
Cho tam giác ABC vuông tại A , BC=2AB=2a . Ở ngoài tam giác ABC , vẽ hình vuông BCDE , tam giác đều ABF và tam giác đều ACG .
a) Tính góc B , góc C , cạnh AB và diện tích tam giác ABC .
b) Chứng minh : FA vuông góc DE . Tính diện tích tam giác FAG , diện tích tam giác FBE .
Cho tam giác ABC cân tại A có góc ở đáy bằng 50 độ. Gọi K là điểm nằm trong tam giác sao cho góc KBC=10 độ: góc KCB=30 độ. C/m tam giác ABK cân và tính các góc của tam giác ABK
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
cho tam giác abc cân tại a tia phân giác góc a cắt bc tại i
a)chứng minh rằng tam giác abi bằng tam giác aci
b) tính góc bia
a) Xét \(\Delta ABI\) và\(\Delta ACI\) có
góc B= góc C(gt)
AB=AC(gt)
góc BAI =góc CAI(AI là p/g góc A)
Vậy \(\Delta ABI\) =\(\Delta ACI\) (g.c.g)
a) Xét ΔABI và ΔACI có
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
AB=AC(ΔABC cân tại A)
\(\widehat{BAI}=\widehat{CAI}\)(AI là tia phân giác của \(\widehat{BAC}\)
Do đó: ΔABI=ΔACI(g-c-g)
b) Ta có: ΔABI=ΔACI(cmt)
nên \(\widehat{AIB}=\widehat{AIC}\)(hai góc tương ứng)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
Vậy: \(\widehat{BIA}=90^0\)
Cho tam giác ABC co góc A=120 do.Tren tia phan giác cua góc A,lay điểm E sao cho AE=AB+AC.Chung minh rang tam giác BCE la tam giác đều ?
Cho tam giác ABC có đương trung tuyến AM, phân giác AD, đường cao AH chia góc BAC thành 4 góc bằng nhau. Tính các góc của tam giác ABC
cho tam giác ABC AH vuông góc BC HMA vuông góc AB HN vAuông góc AC
a chứng minh tam giác HAB đồng dạng với tam giác MHB
b chứng minh AM.AB=AN.AC
c chứng minh tam giác ANM đồng dạng với tam giác ABC
1,cho tam giac nhon ABC kẻ AC vuông góc BC , kẻ BE vuông góc AC gọi H là giao điểm của AD và BE biết rằng AH=BC , tinh góc BAC
2, cho tam giác ABC vuông tại A kẻ AH vuông góc BC tia phân giác cua góc HAC cắt BC ở D . CMR tam giác ABC là tam giác cân