Những câu hỏi liên quan
H24
Xem chi tiết
NT
16 tháng 11 2021 lúc 17:07

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

Bình luận (0)
NT
16 tháng 11 2021 lúc 17:07

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

Bình luận (0)
NQ
Xem chi tiết
TU
Xem chi tiết
VM
12 tháng 10 2019 lúc 16:38

<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1) 

Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ

mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý

vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3

vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)

Bình luận (0)
NT
Xem chi tiết
VD
Xem chi tiết
MS
25 tháng 11 2018 lúc 15:10

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

Bình luận (0)
MS
25 tháng 11 2018 lúc 15:22

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

Bình luận (0)
MS
25 tháng 11 2018 lúc 15:27

Th1 và Th3 thì mình làm đúng rồi

Th2 : y=0

\(\Rightarrow-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)

Th4: y=2

\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow4x^2-8x+4=0\)

\(\Rightarrow x=1\) (nhận)

Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)

Bình luận (0)
CP
Xem chi tiết
YT
Xem chi tiết
H24
28 tháng 4 2018 lúc 19:37

Ta có: \(3x^2+5y^2=345\)

\(\Leftrightarrow3x^2\le345\Leftrightarrow x^2\le\frac{345}{3}=115\)

Ta cũng từ phương trình trên suy ra \(x^2\)là số chính phương chia hết cho 5 

\(\Rightarrow x^2=0;25;100\)

(1)  \(x^2=0\Rightarrow y^2=69\)( không thỏa mãn vì y nguyên )

(2)  \(x^2=25\Rightarrow y^2=54\)( không thỏa vì y nguyên ) 

(3)  \(x^2=100\Rightarrow y^2=9\)

Vậy phương trình \(3x^2+5y^2=345\)có nghiệm nguyên \(\left(x;y\right)=\left(-10;-3\right);\left(10;-3\right);\left(-10;3\right)\)\(;\left(10;3\right)\)

Bình luận (0)
DL
28 tháng 4 2018 lúc 12:21

bn tham khảo link này nhé:

https://olm.vn/hoi-dap/question/760622.html

Bình luận (0)
NT
Xem chi tiết
DA
Xem chi tiết