Những câu hỏi liên quan
NH
Xem chi tiết
TV
Xem chi tiết
AM
3 tháng 7 2015 lúc 11:51

\(2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\right)=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{13.15}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}=1-\frac{1}{15}=\frac{14}{15}\)

Bình luận (0)
DV
3 tháng 7 2015 lúc 11:50

\(=2.2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=4.\left(1-\frac{1}{15}\right)\)

\(=4.\frac{14}{15}\)

\(=\frac{56}{15}\)

Bình luận (0)
XG
Xem chi tiết
KN
23 tháng 3 2021 lúc 22:35

=1/14 nhé

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
IM
31 tháng 8 2016 lúc 17:48

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}\right)\)

\(\Rightarrow S=\frac{1}{2}\left(1+\frac{1}{10}\right)\)

\(\Rightarrow S=\frac{1}{2}.\frac{11}{10}\)

\(\Rightarrow S=\frac{11}{20}\)

Bình luận (0)
TT
18 tháng 9 2021 lúc 14:34

ko bao giờ 323445465

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
DC
Xem chi tiết
H24
24 tháng 4 2017 lúc 21:58

Ta có:

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}< 1\)

Vậy \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}< 1\)

Bình luận (0)
H24
24 tháng 4 2017 lúc 22:02

Đặt biểu thức là A 

Ta có A = (3-1)1x3 + (5-3)/3x5+..........+(101-99)/101x99

            =3/1x3 - 1/1*3 + 5/3x5 - 3/3x5 + ...........+ 101/99x101 - 99/101x99

            = 1- 1/3 +1/3 -1/5 +............+ 1/99 - 1/101

              = 1 -1/101 < 1 (Điều phải chứng minh)

Bình luận (0)
LH
Xem chi tiết
SG
31 tháng 8 2016 lúc 20:37

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{13.15}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)

Bình luận (0)
NK
31 tháng 8 2016 lúc 20:37

mik đã trả lời rồi mà , sao chưa hiện ra ????

Bình luận (0)
MA
31 tháng 8 2016 lúc 20:37

\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11\times13}+\frac{2}{13\times15}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}=\frac{14}{15}\)

Bình luận (0)
NL
Xem chi tiết
ND
30 tháng 4 2017 lúc 8:16

=1-1/3+1/3-1/5+....+1/13-1/15

=1-1/15=14/15

Bình luận (0)
DV
Xem chi tiết
VP
8 tháng 8 2023 lúc 11:10

a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)

Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=\dfrac{1}{100}\)

\(\Rightarrow x+1=100\)

\(x=100-1\)

\(x=99\)

Bình luận (0)
VP
8 tháng 8 2023 lúc 10:58

câu b thiếu kết quả đúng không bn?

Bình luận (0)
VP
8 tháng 8 2023 lúc 11:15

Công thức\(\dfrac{1}{a\times b}=\) 1/ khoảng cách giữa a và b \(\times\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)

* Bạn làm theo công thức và vẫn dụng câu b nhé.

Bình luận (0)