Cmr với mọi số tự nhiên n thì Q=10n-9n-1 chia hết cho 81
CMR với mọi số tự nhiên n thì phân số \(\frac{10n^2+9n+4}{20n^2+20n+9}\) tối giản
ta có \(\frac{10n^2+9n+4}{20n^2+20n+9}\) là phân số tối giản khi
\(\left(10n^2+9n+4,20n^2+20n+9\right)=1\)
mà \(\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)=2n+1\)
\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(10n^2+9n+4,20n^2+20n+9\right)\)
mà \(\left(10n^2+9n+4\right)-\left(2n+1\right)\left(5n+2\right)=2\)
\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(2n+1,2\right)=1\)
Vậy \(\left(10n^2+9n+4,20n^2+20n+9\right)=1\) hay phân số đã cho là tối giản
Gọi \(ƯCLN\left(10n^2+9n+4;20n^2+20n+4\right)=d\)\(\left(d\ge1\right)\)
Ta có : \(\left(10n^2+9n+4\right)⋮d\)và \(\left(20n^2+20n+9\right)⋮d\)
Hay \(\left[2\left(10n^2+9n+4\right)+2n+1\right]⋮d\)
\(\Rightarrow\left(2n+1\right)⋮d\left(1\right)\)
Mặt khác : \(\left(10n^2+9n+4\right)⋮d\Rightarrow\left(10n^2+9n+2\right)+2⋮d\)\(\Rightarrow\left(5n+2\right)\left(2n+1\right)+2⋮d\)\(\)
Vì \(\left(2n+1\right)⋮d\Rightarrow\left(5n+2\right)\left(2n+1\right)⋮d\)
Mà \(\left(5n+2\right)\left(2n+1\right)+2⋮d\)
\(\Rightarrow2⋮d\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\). \(\Rightarrow\) ƯCLN (\(10n^2+9n+4;20n^2+20n+9\)) =1
\(\Rightarrow\)Phân số trên tối giản
\(\)
cmr: với mọi số tự nhiên N thì tích (n+3)(9n+6) chia hết cho 2
ai tic gium minh lai bi tru diem hoi dap nua roi
Chứng minh rằng: 10n - 9n - 1 chia hết cho 81 với mọi số tự nhiên n
Với n=1 => \(10^1-9.1-1=0\) chia hết cho 81
Giả sử \(10^k-9k-1\) chia hết cho 81
Ta cần c/m \(10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81
\(10^{k+1}-9k-1=10.10^k-9k-9-1=\)
\(=\left(10^k-9k-1\right)+9.\left(10^k-1\right)\)
Ta có \(10^k-9k-1\) chia hết cho 81
Ta có \(9\left(10^k-1\right)=9x999....99\) (k chữ số 9)\(=9.9\left(1111...111\right)=81.1111...11\) (k chữ số 1) chia hết cho 81
\(\Rightarrow10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81
\(\Rightarrow10^n-9n-1\) chia hết cho 81 với mọi n
Cmr số 11...1 -10n chia hết cho 9 với mọi số tự nhiên n
( 11...1 có n chữ số 1)
Chứng minh rằng: B = 10n + 72n – 1 chia hết cho 81 với n là số tự nhiên
Ta Có:
Cho biểu thức trên là B
\(b\)\(=\)\(10\)\(^n\)+ \(72n\)\(-1\)
\(=10\)\(^n\)\(+72n\)\(-1\)
\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Ta Có:
Cho biểu thức trên là B
bb==1010nn+ 72n72n−1−1
=10=10nn+72n+72n−1−1
=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
CMR: B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.
10^n - 9n - 1 chia hết cho 27 (*)
Sử dụng phương pháp quy nạp.
- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27.
- Giả sử (*) đúng với n = k (thuộc N*), tức là:
10^k - 9k - 1 chia hết cho 27
- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là:
10^(k+1) - 9(k+1) - 1 chia hết cho 27.
Thật vậy:
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k
10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27.
81 chia hết cho 27, nên 81k chia hết cho 27.
Vậy (*) đúng với mọi n thuộc N* (đpcm).
Chứng minh rằng với mọi số tự nhiên \(n\) thì phân số \(\dfrac{10n^2+9n+4}{20n^2+20n+9}\) tối giản
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên thì phân số tối giản
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{10n^2+9n+4}{20n^2+20n+9}\)tối giản
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.