Những câu hỏi liên quan
H24
Xem chi tiết
TH
11 tháng 2 2016 lúc 8:47

a, a+k và a+2k là các số nguyên tố lớn hơn 3 ---> 3 số đó đều là số lẻ 
---> k chẵn (vì a lẻ và a+k lẻ) 
k chẵn nên k có thể có 3 dạng sau k = 6m; k = 6m+2 ; k = 6m+4 (m thuộc N) 
1) Nếu k = 6m+2. 
...Xét 2 TH : 
...+ a chia 3 dư 1 : 
.....Khi đó a+k = a+6m+2 chia hết cho 3 (mâu thuẫn với giả thiết a+k là số n/tố) 
...+ a chia 3 dư 2 : 
.....Khi đó a+2k = a+12m+4 chia hết cho 3 (trái với giả thiết a+2k là số n/tố) 
2) Nếu k = 6m+4 
...Xét 2 TH : 
...+ a chia 3 dư 1 
....Khi đó a+2k = a+12m+8 chia hết cho 3 (trái với giả thiết) 
...+ a chia 3 dư 2 
....Khi đó a+k = a+6m+4 chia hết cho 3 (trái giả thiết) 
Vậy 2 khả năng k = 6m+2 và k = 6m+4 bị loại 
---> k = 6m hay k chia hết cho 6.

Tích cho mình nha !

Bình luận (0)
NK
Xem chi tiết
LL
Xem chi tiết
H24
30 tháng 1 2019 lúc 23:05

do m ;m+k ; m+2k là số nguyên tố > 3

=> m ;m+k ;m+2k lẻ

=> 2m+k chẵn

mà 2m chẵn

=>k ⋮ 2

mặt khác m là số nguyên tố >3 

=> m có dạng 3p+1 và 3p+2 (p∈ N*)

xét m=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)

với k =3a+1 ta có 3p+1 + 2(3a+1) = 3(p+1+3a) loại vì m+2k là hợp số 

với k = 3a+2 => m+k = 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

mà (3;2)=1

=> k ⋮ 6

Bình luận (0)
LQ
Xem chi tiết
SL
2 tháng 5 2016 lúc 8:00

a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).

Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)

=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24

Bình luận (0)
NS
2 tháng 5 2016 lúc 8:02

Xin lỗi Hoàng Tử Mặt Trời nha 

Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).

Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)

=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24

Bình luận (0)
PD
25 tháng 11 2023 lúc 10:48

Vì p là số nguyên tố lớn hơn 3 → p không chia hết cho 3 →  p có dạng 3k + 1 hoặc 3k + 2.

Với p = 3k + 1

→ (p - 1)(p + 1) = 3k(3k + 2) ⋮ 3

Với p = 3k + 2

→ (p - 1)(p + 1) = 3(3k - 1)(k + 1) ⋮ 3

⇒ (p - 1)(p + 1) luôn chia hết cho 3 (1)

Mà p là số nguyên tố → p là số lẻ → (p - 1)(p + 1) là tích hai số chẵn liên tiếp.

⇒ (p - 1)(p + 1) chia hết cho 8 (2)

Mà (3, 8) = 1 (3)

Từ (1), (2) và (3) → (p - 1)(p + 1) ⋮ 24

Tương tự CM: (q - 1)(q + 1) ⋮ 24

⇔ (p - 1)(p + 1) - (q - 1)(q + 1) ⋮ 24

⇔ p2 - 1 - q2 + 1 ⋮ 24

⇔ p2 - q2 ⋮ 24 (đpcm)

Bình luận (0)
OT
Xem chi tiết
OT
19 tháng 5 2016 lúc 13:07

a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).

Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)

=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24

Bình luận (0)
LP
19 tháng 5 2016 lúc 14:15

Gửi câu hỏi mà lại chính mình trả lời 

Bình luận (0)
MD
Xem chi tiết
NP
Xem chi tiết
GM
Xem chi tiết
DD
22 tháng 12 2015 lúc 22:07

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

Bình luận (0)
PS
Xem chi tiết