Những câu hỏi liên quan
TA
Xem chi tiết
MN
1 tháng 10 2021 lúc 8:04

1/(x+2)-(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x

2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)

Bình luận (0)
BK
Xem chi tiết
MT
10 tháng 8 2015 lúc 8:41

 

(x+1)(x-4)(x+2)(x-8)+4x^2

=[(x+1)(x-8)][(x-4)(x+2)]+4x2

=(x2-7x-8)(x2-2x-8)+4x2

Đặt t=x2-2x-8 ta được:

(t-5x).t+4x2

=t2-5xt+4x2

=t2-xt-4xt+4x2

=t.(t-x)-4x.(t-x)

=(t-x)(t-4x)

thay t=x2-2x-8 ta được:

(x2-3x-8)(x2-6x-8)

Vậy (x+1)(x-4)(x+2)(x-8)+4x^2=(x2-3x-8)(x2-6x-8)

Bình luận (0)
LA
Xem chi tiết
H24
14 tháng 3 2018 lúc 8:51

\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
H24
5 tháng 7 2019 lúc 15:49

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

Bình luận (0)
ZZ
5 tháng 7 2019 lúc 15:54

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

Bình luận (0)
H24
5 tháng 7 2019 lúc 16:06

cảm ơn nha!

Bình luận (0)
KT
Xem chi tiết
H24
22 tháng 7 2021 lúc 17:12

x3-2x2-5x=x(x2-2x-5)

Bình luận (0)
NT
22 tháng 7 2021 lúc 18:21

\(x^3-2x^2-5x=x\left(x^2-2x-5\right)\)

Bình luận (0)
DV
Xem chi tiết
LL
7 tháng 11 2021 lúc 10:43

1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

Bình luận (0)
NM
7 tháng 11 2021 lúc 10:43

\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)

Bình luận (1)
H24
7 tháng 11 2021 lúc 10:43

a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

b. \(=\left(1-x\right)^3\)

Bình luận (0)
TK
Xem chi tiết
H24
25 tháng 7 2019 lúc 14:20

\(3x^2+5x-2\)

\(=3x^2+6x-x-2\)

\(=3x\left(x+2\right)-\left(x+2\right)\)

\(=\left(3x-1\right)\left(x+2\right)\)

Hok tốt !

Bình luận (0)
DL
20 tháng 8 2019 lúc 9:19

\(3x^2+5-2\)

\(=3x^2+6x-x-2\)

\(=3x\left(x+2\right)-\left(x+2\right)\)

\(=\left(3x-1\right)\left(x+2\right)\)

Bình luận (0)
AD
Xem chi tiết
HN
5 tháng 9 2016 lúc 18:13

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Ta có : \(A=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+11\) , suy ra \(A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(\Rightarrow A=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Bình luận (0)
VT
5 tháng 9 2016 lúc 18:13

f(x) = (x+1)(x+3)(x+5)(x+7)+15

        = (x+1)(x+7)(x+3)(x+5)+15

        = (x2+7x+x+7)(x2+5x+3x+15)+15

        = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

Bình luận (0)