Những câu hỏi liên quan
QP
Xem chi tiết
LL
4 tháng 11 2021 lúc 13:07

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^5}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^6}=1-\dfrac{1}{2^6}\)

Bình luận (1)
QP
4 tháng 11 2021 lúc 13:57

Mọi người giúp mink nhahihi

Bình luận (0)
LL
Xem chi tiết
NT
5 tháng 4 2017 lúc 12:11

Ta có : \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{64}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^6}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^5}\)

\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^6}\right)\)

\(\Rightarrow A=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bình luận (0)
NC
5 tháng 4 2017 lúc 11:54

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...+\dfrac{1}{32}-\dfrac{1}{64}\)

\(=1-\dfrac{1}{64}\)

\(=\dfrac{63}{64}\)

Bình luận (0)
SN
5 tháng 4 2017 lúc 11:52

63/64 like nhé

Bình luận (0)
H24
Xem chi tiết
AH
31 tháng 3 2023 lúc 19:13

Lời giải:

$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}$

$2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$

$2\times A-A=(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32})-(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64})$

$A=1-\frac{1}{64}=\frac{63}{64}$

Bình luận (0)
MN
31 tháng 3 2023 lúc 19:11

A=1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

 2A = 2.(1/2+1/4+1/8+1/16+1/32+1/64)
            = 1 + 1/2+1/4+1/8+1/16+1/32
=> 2A - A = (1+1/2+1/4+1/8+1/16+1/32) - (1/2+1/4+1/8+1/16+1/32+1/64)
=> A = 1 - 1/64
         = 63/64

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 7 2018 lúc 20:28

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....\) 

Đặt  \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\)

\(2A-A=1-\frac{1}{2^n}\)

Tổng là \(A=1-\frac{1}{2^n}\)

Bình luận (0)
TH
Xem chi tiết
TN
Xem chi tiết
IY
12 tháng 3 2018 lúc 19:09

BÀI 1:

\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)

\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)

\(S=1+1-\frac{1}{8}\)

\(S=\frac{15}{8}\)

BÀI 2:

\(A=1.2+2.3+3.4+...+98.99\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)

\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)

\(3A=98.99.100\)

\(3A=970200\)

\(\Rightarrow A=970200:3\)

\(A=323400\)

CHÚC BN HỌC TỐT!!!
 

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 6 2017 lúc 5:02

 

Cộng thêm 1/2 vào biểu thức đã cho, có:

S + 1/21/2+1/4+ 1/8+ 1/16+1/32+1/64+1/128

Nhận xét:

 

 

Bình luận (0)
NT
Xem chi tiết
NP
8 tháng 11 2017 lúc 21:15

Ta có:2A=\(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

2A-A=\(\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)

\(=2-\frac{1}{32}=\frac{63}{32}=A\)

Bình luận (0)
LJ
8 tháng 11 2017 lúc 21:16

Ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\right)\)

\(\Rightarrow A=1-\frac{1}{2^5}=\frac{31}{32}\)

Vậy \(A=\frac{31}{32}\)

Bình luận (0)
H24
8 tháng 11 2017 lúc 21:17

1/2=1- 1/2

1/4=1/2 -1/4

A=1+1-1/2+1/2-1/4+1/8-1/8+1/8-1/16+1/16-1/32

A=1+1-1/36

71/36

Bình luận (0)
NL
Xem chi tiết