chứng minh:
a. \(x^2-3x+3\ge2,25\)
b. \(m^2+n^2+5+2mn-4m-4n\ge0\)
chứng minh:
c) \(x^2-3x+3\ge2,25\)
d) \(m^2+n^2+5+2mn-4m-4n\ge0\)
(làm theo hàng đẳng thức thứ 1 hoặc 2 hoặc 3 nhé các cậu bởi vì mình mới học đến đó thôi. tks các cậu nhiều hihi)
Lời giải:
c) Sửa đề: \(x^2-3x+3\geq 0,75\)
Ta có:
\(x^2-3x+3=x^2-2.\frac{3}{2}x+3=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2+0,75\)
\(=(x-\frac{3}{2})^2+0,75\)
Vì \((x-\frac{3}{2})^2\geq 0, \forall x\Rightarrow x^2-3x+3=(x-\frac{3}{2})^2+0,75\geq 0,75\)
Ta có đpcm
d) Không có dấu "=" bạn nhé.
\(m^2+n^2+5+2mn-4m-4n\)
\(=(m^2+2mn+n^2)-4(m+n)+5\)
\(=(m+n)^2-2.2(m+n)+5\)
\(=(m+n)^2-2.2(m+n)+2^2+1\)
\(=(m+n-2)^2+1\)
Vì \((m+n-2)^2\geq 0, \forall m,n\)
\(\Rightarrow m^2+n^2+5+2mn-4m-4n=(m+n-2)^2+1\geq 0+1>0\)
cho \(\dfrac{x}{y};\dfrac{m}{n}\), chứng minh
a) \(\dfrac{19x-18m}{19y-18n}=\dfrac{3x+4m}{3y+4n}\)
b) \(\dfrac{x.m}{y.m}=\dfrac{x^2+m^2}{y^2+n^2}\)
Tìm m,n để mỗi hàm số sau là hàm số bậc nhất:
a) y = (3m-1) (2n+3)x2 - (4n+3)x - 5n2 + mn - 1
b) y = (m2-2mn+n2)x2 - (3n+n)x - 5(m-n) + 3m2 + 1
c) y = (2mn+2m-n-1)x2 + (mn+2m-3n-6)x + mn2 - 2m + 1
a) Để y là hàm số bậc nhất
\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)
b;c Tương tự.
Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)
Chứng minh rằng nếu P là số chính phương thì m=n
Giả sử \(m>n>1\)
Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)
\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)
\(=-4n^3+4< 0\) với \(\forall n>1\)
\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)
Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)
\(=m^2n^4-4mn^2+4n^3-m^2n^4\)
\(=-4mn^2+4n^3\)
\(=-4n^2\left(m-n\right)< 0\) với \(\forall m>n>1\)
\(\Rightarrow n^2\left(m^2n^2-4m+4n\right)< m^2n^4\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4m+4n\right)< m^2n^4\)
\(\Rightarrow\left(\frac{mn^2-2}{n}\right)^2< P< \left(mn\right)^2\)
Xét \(\frac{mn^2-2}{n}-\left(mn-1\right)=\frac{n-2}{n}\ge0\) với \(\forall n\ge2\)
\(\Rightarrow\frac{mn^2-2}{n}\ge mn-1\)
\(\Rightarrow\left(mn-1\right)^2< P< \left(mn\right)^2\left(VL\right)\)
Kẹp giữa 2 số chính phương liên tiếp thì không tồn tại số chính phương nào.OK?
Giả sử \(m< n\)
\(\Rightarrow P>m^2n^2\left(3\right)\)
Xét \(m^2n^2-4m+4n-\left(mn+2\right)^2\)
\(=m^2n^2-4m+4n-m^2n^2-4mn-4\)
\(=n-m-mn-1=n\left(1-m\right)-m-1< 0\)
\(\Rightarrow P< \left(mn+2\right)^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\left(mn\right)^2< P< \left(mn+2\right)^2\)
Để P là số chính phương thì \(P=\left(mn+1\right)^2\)
\(\Rightarrow m^2n^2-4m+4n=m^2n^2+2mn+1\)
\(\Rightarrow-4m+4n-2mn=1\) quá VL
Với \(m=n\Rightarrow P=m^2n^2=\left(mn\right)^2\left(Lscp\right)\) cực kỳ HL:v
P/S:Ko chắc đâu nha.m thử làm bài 1 cấy.t cụng ra rồi nhưng coi cách m cho nó chắc:v Định dùng cách kẹp khác mà đề cho chặt quá:((
\(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)
\(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)
Đặt : \(F\left(x\right)=ax+b\)
Với x=1 từ (1) và (3)
\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow a+b=4\)(*)
Với x=3 từ (3) và (2)
\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)
\(\Rightarrow3a+b=14\)(**)
Từ (*) và (**)
\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)
\(\Rightarrow F\left(x\right)=ax+b=5x-1\)
T lm r, ko bt có đúng ko:))
Chứng minh rằng 24n+1 + 34m+1 chia hết cho 5 với mọi n, m thuộc N
Ta có: 24n+1 + 34m+1
= 24n.2 + 34m.3
= (24)n.2 + (34)m.3
= (...6)n.2 + (...1)m.3
= (...6).2 + (...1).3
= (...2) + (...3)
= ...5
Vì ...5⋮5 nên 24n+1+34m+1⋮5
Vậy 24n+1+34m+1⋮5
Ta có: 24n+1 + 34m+1
= 24n.2 + 34m.3
= (24)n.2 + (34)m.3
= (...6)n.2 + (...1)m.3
= (...6).2 + (...1).3
= (...2) + (...3)
= ...5
Vì \(\overline{...5}⋮5\) nên \(2^{4n+1}+3^{4m+1}⋮5\)
Vậy \(2^{4n+1}+3^{4m+1}⋮5\)
Cho m>n, chứng minh:
2-4m<3-4n
Ta có m> n <=> 4m>4n<=> -4m <-4n mà 2<3 <=> 2-4m < 3-4n
Cho \(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\left(m\ge0,n>1\right)\)
a,Rút gọn A
b,Tính A biết \(m=\sqrt{56+24\sqrt{5}}\)
c,Tìm GTNN của A
\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)
Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)
Thực hiện phép tính:
a)\(\frac{4n}{2n-m}+\frac{2m}{m-2n}\)
b)\(\frac{2mn^3}{n^2-9}.\frac{n^2-6n+9}{2mn^3}\)
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương