cho tam giac ABC với trung tuyến AD=12,G là trọng tâm.khi đó độ dài đoạn GD bằng
cho tam giác ABC, AB=12 cm, AC=12 cm. AD là trung tuyến tam giác ABC. G là trọng tâm. Tính GD.
(3,0 điểm) Cho tam giác ABC cân tại A, trung tuyến AM.
a) Chứng minh rằng tam giac ABM=t am giac ACM.
b) Chứng minh rằng AM là tia phân giác của góc BAC.
c) Gọi G là trọng tâm tam giac ABC. Nếu AB = 20cm, BC = 32cm, tính độ dài đoạn AG.
a: Xét ΔABM và ΔAMC có
AM chung
AB=AC
BM=CM
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
MB=MC=BC/2=16cm
AM=căn 20^2-16^2=12cm
AG=2/3*AM=8cm
Cho tam giác ABC. AD, BE là 2 đường trung tuyến cắt nhau tại G. Kéo dài GD thêm 1 đoạn DI=DG. Chứng minh G là trung điểm AI
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(gt)
BE là đường trung tuyến ứng với cạnh AC(gt)
AD cắt BE tại G(Gt)
Do đó: G là trọng tâm của ΔBAC(Tính chất ba đường trung tuyến của tam giác)
Suy ra: AG=2GD
mà GI=2GD(D là trung điểm của GI)
nên AG=GI
hay G là trung điểm của AI(Đpcm)
Cho tam giác abc có 3 góc nhọn.vẽ trung tuyến am, lấy g là trọng tâm
a)so sánh độ dài của gm với ag
b)trên tia am lấy điểm d sao cho m là trung điểm của gd chứng minh ga=gd rồi chứng minh cg là trung tuyến của tam giác cad
c)tia cg cắt ab tại h. chứng minh h là trung điểm của ab
Cho tam giác ABC có 3 góc nhọn. Vẽ trung tuyến AM, lấy G là trọng tâm
a. So sánh độ dài của GM với AG
b. Trên tia AM lấy điểm D sao cho M là trung điểm của GD. Chứng minh GA = GD, Chứng minh CG là trung tuyến của tam giác CAD
c. Tia CG cắt AB tại H. Chứng minh H là trung điểm của AB
Bài 12:Cho tam giác ABC có hai đường trung tuyến BI và CK cắt nhau ở G. Kéo dài AG thêm một đoạn GD = GA và AD cắt BC tại M.
a) Chứng minh: tam giác MBD = tam giác MCG
b) So sánh BD với CK
a)Ta có: △ABC có 2 đường trung tuyến BI và CK giao nhau tại G
=> G là trọng tâm của tam giác ABC
=> AG là đường trung tuyến
Mà AG cắt BC tại M
=> AM là đường trung tuyến
=> MB= MC
Xét tam giác ABC có K là TĐ AB ; G là TĐ của AD
=> KG // BD
Mà C thuộc KG
=> GC // BD.=> B1 = C1( 2 góc so le trong)
Xét tam giác BMC và tam giác CMG có
MB = MC; M1 = M2; B1 = C1
=> △BMC = △CMG (g . c . g) (1)
Từ (1)=> BD=GC (2 cạnh t/ứ)
Có CG + KG = CK
=>CG < CK
Mà BD = CG
=> BD < CK
Cho Tam Giac ABC có 3 đường trung tuyến AD ; BE ; CF đồng quy tại G đảo lại nếu có GD = GE =GF
Nếu Tam Giac ABC đều hãy CM GD=GE=GF
CM Tam Giac ABC đều
Gọi G là trọng tam tam giac ABC. Vẽ điểm D sao cho G là trung điểm của AD. Chứng minh rằng: Các cạnh tam giác BGD bằng 2/3 các đường trung tuyến của tam giác ABC
Cho tam giác ABC có AB bằng 4 cm AC bằng 12 cm BC = 6 cm các đường phân giác trong AD be cắt AB tại I
a, Tính BD và CD
b, Gọi AM là đường trung tuyến và G là trọng tâm tam giác ABC . C/m IG//BC và tính độ dài IG