Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
NC
Xem chi tiết
NC
2 tháng 11 2018 lúc 16:41

với c=0=>a=0 đẳng thức đúng

với c khác 0 ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}}{c^{2018}}=\frac{b^{2018}}{d^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)

=>\(\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)

Bình luận (0)
PP
Xem chi tiết
NT
Xem chi tiết
H24
4 tháng 11 2016 lúc 16:32

d ở đâu vậy bạn

Bình luận (2)
NT
4 tháng 11 2016 lúc 20:58

Đề bài là tính

Bình luận (0)
H24
Xem chi tiết
PT
9 tháng 12 2017 lúc 16:07

Từ \(a+b+c=0\) bạn tự chứng minh \(a^3+b^3+c^3=3abc\)

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)

                   \(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự, ta có: \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

Bình luận (0)
TM
Xem chi tiết
KB
18 tháng 12 2017 lúc 16:06

Xét \(a+b+c=0\) thì \(\hept{\begin{cases}a+2b=c\\b+2c=a\\c+2a=b\end{cases}}\)\(\Rightarrow P=\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{abc}=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}+\frac{c+2a-b}{b}=\frac{a+2b-c+b+2c-a+c+2a-b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+2b=3c\\b+2c=3a\\c+2a=3b\end{cases}}\)\(\Rightarrow P=\frac{3a.3b.3c}{abc}=27\)

Bình luận (0)
LK
1 tháng 9 2020 lúc 16:53

Có a+2b-c/c=b+2c-a/a=c+2a-b/b

suy ra a+2b-c/c=b+2c-a/a=c+2a-b/b=a+2b-c+b+2c-a+c+2a-b/a+b+c=2a+2b+2c/a+b+c=2

suy ra a+2b-c=2c suy ra a+2b=3c

           b+2c-a=2a suy ra b+2c=3a

           c+2a-b=2b suy ra c+2a=3b

Có P=(2+a/b)(2+b/c)(2+c/a)=(2b+a/b)(2c+b/c)(2a+c/a)=(3c/b)(3a/c)(3b/a)=27abc/abc=27

Bình luận (0)
 Khách vãng lai đã xóa
NH
2 tháng 9 2020 lúc 17:28
Đồ con lợn
Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
XO
24 tháng 8 2020 lúc 16:42

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)(dãy tỉ số bằng nhau)

=> a = b = c

Khi đó  \(P=\left(1+\frac{2a}{b}\right)\left(1+\frac{2b}{c}\right)\left(1+\frac{2c}{a}\right)=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)\)

= (1 + 2)(1 + 2)(1 + 2) = 3.3.3 = 27

Vậy P = 27

Bình luận (0)
 Khách vãng lai đã xóa
LD
24 tháng 8 2020 lúc 16:44

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) ( do a + b + c khác 0 )

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow a=b=c\)

Thế vào P ta được :

\(P=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)=\left(1+2\right)\left(1+2\right)\left(1+2\right)=27\)

Bình luận (0)
 Khách vãng lai đã xóa
HD
24 tháng 8 2020 lúc 16:47

áp dụng dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) , suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Nhân vế trên cho 2, ta suy ra: \(\frac{2a}{b}=\frac{2b}{c}=\frac{2c}{a}=2.1=2\)

Thay từng giá trị vào biểu thức P, ta có:

\(P=\left(1+\frac{2a}{b}\right)\left(1+\frac{2b}{c}\right)\left(1+\frac{2c}{a}\right)=\left(1+2\right)\left(1+2\right)\left(1+2\right)=27\)

Vậy giá trị P=27 

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NA
Xem chi tiết