CHo 2^n+ 2^7+ 2^4 là số chính phương .Tìm n
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Tìm n thuộc N để 2^n+2^4+2^7 là số chính phương
Tìm số tự nhiên n biết 2^n + 2^4 + 2^7 là số chính phương
Đặt \(2^4+2^7+2^n=a^2\left(a\in N\right)\)
\(\Leftrightarrow\left(2^4+2^7\right)+2^n=a^2\)
\(\Leftrightarrow2^4.\left(1+2^3\right)+2^n=a^2\)
\(\Leftrightarrow2^4.3^2+2^n=a^2\)
\(\Leftrightarrow\left(2^2.3\right)^2+2^n=a^2\)
\(\Leftrightarrow12^2+2^n=a^2\)
\(\Leftrightarrow2^n=a^2-12^2\)
\(\Leftrightarrow2^n=\left(a-12\right).\left(a+12\right)\)
Đặt \(a-12=2^q\) ( * ) ; \(a+12=2^p\) ( ** )
Giả sử p > q ; p , q \(\in\) N
Lấy ( ** ) - ( * ) vế với vế ta được : \(24=2^p-2^q\)
\(2^3.3=2^q.\left(2^{p-q}-1\right)\)
\(\Rightarrow\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\Rightarrow\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\Rightarrow\hept{\begin{cases}q=3\\p-q=2\end{cases}}\) \(\hept{\begin{cases}q=3\\p=5\end{cases}}\)
\(\Rightarrow n=p+q=3+5=8\)
Vậy \(n=8\)
Bài 1: Tìm n có 2 chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương
Bài 2: Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không thay đổi
Bài 3: Tìm số tự nhiên n (n>0) sao cho tổng 1! + 2! + ... + n! là một số chính phương
Bài 4: Tìm các chữ số a và b sao cho: \(\overline{aabb}\)là số chính phương
Bài 5: CMR: Tổng bình phương của 2 số lẻ bất kì không phải là một số chính phương
Bài 6: Một số gồm 4 chữ số, khi đọc ngược lại thì không đổi và chia hết cho 5, Số đó có thể là số chính phương hay không?
Bài 7: Tìm số chính phương có 4 chữ sô chia hết cho 33
CÁC BẠN GIÚP MÌNH NHÉ! THANKS
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
chịu thôi
...............................
Tìm stn n biết 2^n+2^7+2^4 là số chính phương
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương