Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
MN
15 tháng 6 2021 lúc 22:26

\(a.\)

\(z^2-6z+5-t^2-4t\)

\(=z^2-6z+9-\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

\(b.\)

\(4x^2-12x-y^2+2y+1\)

Câu này đề sai sao ấy em !

Bình luận (0)
MY
15 tháng 6 2021 lúc 23:27

b, mik nghĩ đề sửa thành: \(4x^2-12x-y^2+2y+8\)

\(=4x^2-12x+9-y^2+2y-1\)

\(=\left(2x\right)^2-2.2.3.x+3^2-\left(y^2-2y+1\right)\)

\(=\left(2x-3\right)^2-\left(y-1\right)^2\)

Bình luận (0)
QA
Xem chi tiết
MT
28 tháng 7 2015 lúc 15:11

 

a) x2+10x+26+y2+2y

=x2+10x+25+y2+2y+1

=(x+5)2+(y+1)2

 

b) z2-6z+5-t2-4t

=z2-6z+9-t2-4t-4

=(z-3)2-(t2+4t+4)

=(z-3)2-(t+2)2

 

c)x2-2xy+2y2+2y+1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

 

d) 4x2-12x-y2+2y+8

=4x2-12x+9-y2+2y-1

=(2x-3)2-(y2-2y+1)

=(2x-3)2-(y-1)2

    

Bình luận (0)
PN
29 tháng 6 2018 lúc 14:52

bạn ơi , bạn lấy bài này ở đâu vậy bạn

Bình luận (0)
FS
Xem chi tiết
NA
22 tháng 8 2019 lúc 12:57

\(1.z^2-6z+5-t^2-4t\)

\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

Bình luận (0)
NA
22 tháng 8 2019 lúc 13:18

\(3,x^2-2xy+2y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

Bình luận (0)
HT
Xem chi tiết
XO
25 tháng 7 2020 lúc 14:22

1) x2 + 10x + 26 + y2 + 2y 

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x2 + 5x + 5x + 25) + (y2 + y + y + 1)

= x(x + 5) + 5(x + 5) + y(y +  1) + (y + 1)

= (x + 5)2 + (y + 1)2

2) z2 - 6z + 13 + t2 + 4t 

= (z2 - 6z + 9) + (t2 + 4t + 4) 

= (z2 - 3z - 3z + 9) + (t2 + 2t + 2t + 4)

= z(z - 3) - 3(z - 3) + t(t + 2) + 2(t + 2)

= (z - 3)2 + (t + 2)2

3) x2 - 2xy + 2y2 + 2y + 1

(x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - xy - xy + y2) + (y2 + y + y +1)

= x(x - y) - y(x - y) + y(y + 1) + (y + 1)

= (x - y)2 + (y + 1)2

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
LA
3 tháng 9 2016 lúc 21:00

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

Bình luận (0)
LA
3 tháng 9 2016 lúc 21:24

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

Bình luận (0)
H24
6 tháng 9 2019 lúc 16:29

:v dễ mà có trong nâng cao mới hc qua :3

a, x2+10x+26+y2+2y

=(x2+2.x.5+52)+(12+2.1.y+y2)

=(x+5)2+(y+1)2

b, x2−2xy+2y2+2y+1

=x2−2xy+y2+y2+2y+1

=(x2−2.x.y+y2)+(y2+2.y.1+12)

=(xy)2+(y+1)2

c,z2−6z+5−t2−4t

=−(t2+4tz2+6z−5)

=−(t2+2.t.2+22−z2+2.z.3−32)

=−((t2+2.t.2+22)−(z2−2.z.3+32))

=−((t+2)2−(z−3)2)

=(z−3)2−(t+2)2

Bình luận (0)
BN
Xem chi tiết
LC
12 tháng 7 2018 lúc 13:55

bài này nhìn cái là ra nghay mà phân tích 26=25+1 bỏ 25 vào x bình với 10x , bỏ 1 vào y bình và 2y là ok 

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 6 2018 lúc 7:42

Bình luận (0)
HS
Xem chi tiết
H24
23 tháng 8 2017 lúc 17:18

1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) 16x2 +  * .24xy + x

b) * - 42xy + 49y2

c) 25x+ * + 81

d) 64x2 - * +9

2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương

a) x2 + 10x + 26 + y+ 2y

b) z2 - 6z + 5 - t2 - 4t

c) x2 - 2xy + 2y2 + 2y + 1

d) ( x + y + 4 )( x + y - 4 )

e) ( x + y - 6 )

Bình luận (0)
B1
23 tháng 8 2017 lúc 17:27

Bài 1: Đề như đã sửa thì cách giải như sau: 
Trong Tam giác ABC 
Có AM/AB = AN/AC 
Suy ra: MN // BC . 

Trong tam giác ABI 
có 
MK // BI do K thuộc MN 
Do đó : MK/BI =AM/AB (1) 

Tương tự trong tam giác AIC 
Có NK// IC nên NK/IC = AN/AC (2) 

Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB 
Lại có IC = IB ( t/c trung tuyến) 
nên NK = MK (ĐPCM) 

Bài 2: 
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a) 
Từ A kẻ đường cao AH ( H thuộc BC). 

b) Do tam giác ABC vuông tại A áp dụng pitago ta có 
BC=căn(AB mũ 2 + AC mũ 2)= 20cm 

d) Có S(ABC)= AB*AC/2= AH*BC/2 
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm 

c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45) 
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2) 

Trừ vế với vế có: 
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45) 
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD. 
400-40*DC= -112+................ 
Suy 128- 10*DC= Căn(2) * AD (3) 

Thay (3) v ào (2): rính được DC = 80/7 cm; 

BD= BC - DC= 60/7 cm; 


a) Ta có S(ABD)=AH*BD/2 
S(ADC)=AH*DC/2 
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;

Bình luận (0)
NH
Xem chi tiết
GN
10 tháng 6 2018 lúc 11:27

Bài 1:

a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)

..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)

............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)

..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)

d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)

Bình luận (0)
GN
10 tháng 6 2018 lúc 11:30

Bài 2:

a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)

b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)

d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

Bình luận (0)