Cho biểu thức M = x^2 - 5 / x^2 - 2 ( x thuộc Z) . Tìm x thuộc Z để M có giá trị là số nguyên.
Cho biểu thức M(x)=x^2-x-2. Tìm x thuộc Z để M(x) có giá trị là số nguyên tố
Cho biểu thức M(x)=x2-x-2
Tìm x thuộc Z để M(x) có giá trị nguyên tố
Ta có
x2-x-2=x(x-1)-2
Vì x thuộc Z nên x(x-1) là số chẵn
Ta có x(x-1) \(⋮2\)
\(2⋮2\)
=> M(x) luôn là 1 số chẵn
=> M(x) không thể là số nguyên tố
Chú ý rằng ko có trường hợp x2-x-2=2
Khi đó x(x-1)=4, ko có x nào thỏa mãn
a) rút gọn biểu thức M = x+12/x-4=1/căn x + 2 -4/ căn x -2
b) tìm x thuộc z để 1/M có giá trị là số nguyên
tìm x thuộc Z để giá trị của biểu thức M=x^2 + 2x -13 / x-3 là một số nguyên
Ta có:
Do nên
=>
=>
=>
Cho biểu thức M (x/x2 - 25 - x-5/x2 + 5x) : 2x-5/x2+ x
a) rút gon biểu thức M
b) Tính giá trị của M khi x = 2,5
c) Tìm x để M = 1
e) Tìm x thuộc Z để M thuộc Z
Cho biểu thức A= x - 5/x-4 và B=2/x+5 + x+25/x^2-25 (với x không bằng +- 5; x không bằng +-4 )
a) Tính giá trị của A khi x = - 3
b) Rút gọn biểu thức B
c) Tìm x thuộc Z để M thuộc Z , biết M = A.B
a: Thay x=-3 vào A, ta được:
\(A=\dfrac{-3-5}{-3-4}=\dfrac{8}{7}\)
b: \(B=\dfrac{2}{x+5}+\dfrac{x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{2x-10+x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3}{x-5}\)
c: Để M là số nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;7;1\right\}\)
Cho biểu thức M(x)=x^2-x-2
a.Tính:M(1),M(-1/2),M(√1,44)
b.Tìm x để:M(x)=-2
c.Tìm x thuộc Z để M(x)có giá trị là số nguyên tố
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3