căn(a+b)^2 + (b+d)^2 <= (căn a^2+b^2) + (căn c^2+d^2)
Cho a, b,c, d >0 cm
Căn(a/b+c+d) + căn(b/a+c+d) + căn(c/a+b+d) + căn(d/a+b+c) > 2
Cố gắng giúp mik nhé. Mik đang ôn thi
chứng minh căn của [(a-c)^2+(b-d)^2]=< căn của (a^2+b^2)+căn của (c^2+d^2)
đề đúng
\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
BT1 so sánh
a) căn 5 căn 3 và căn 3 căn 5
b) căn 2 + căn 3 và căn 10
BT2 tính
a) (-căn 2)^4
b) ( căn a)^3
c) (- căn 2/2)^2
d) (- căn b)^2
e) ( căn a)^2
f)( căn b)^2
g ) ( căn b)^3
Bài 1: Tìm điều kiện của x để các biểu thức sau có nghĩa.
a) Căn(x-2) + 1/căn(x-3)
b) Căn (x+3/x-2)
Bài 2: Thức hiện phép tính.
a) A= Căn(2- căn 5)2 - căn 5
b) B= Căn (7- 4căn3) + căn 3
c) C= Căn (5 - 2căn6) + Căn (5 + 2căn6)
d) D= (căn 2 + căn 10) / (1 + căn 5)
e) E= Căn(2 - căn 3) + Căn(2 + căn3)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\sqrt{2}}{2}\Rightarrow sinA=\sqrt{1-cos^2A}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{a}{sinA}=2R\Rightarrow R=\dfrac{a}{2sinA}=\sqrt{2}\)
Bài 1 :
a, tính giá trị của biểu thức
A=(1-1/2)×(1-1/3)×...×(1-1/2009)
b, cmr với mọi số tự nhiên n>1 thì
1/ căn 1 +1/căn 2 +1/căn 3+...+1/căn n >căn n
Bài 2 : Cho a+c/b+d=a+c/b-d ( với a, b, c , d khác 0vaf b khác cộng trừ d
Cmr : a^2009-c^2009/b^2009-d^2009 = (a/b)^2009
Làm ơn giúp mình nha
Help me !!
tìm giá trị nhỏ nhất,giá trị lớn nhất của các biểu thức:
a A=căn( x-2)+căn(6-x)
b B=2x+căn(5-x^2)
c C=căn(1+x)+căn(8-x)
d D=2căn(x+5)+căn(1-2x)
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
Cho biểu thức S=a^2+b^2+c^2+d^2+ac+bd trong đó ab-bc=1
a) CMR S >= căn(3)
b) Tính GT tổng (a+b)^2 + (b+d)^2 khi biết S= căn (3)
Bài 1:So sánh
a. 4 và căn 15
b. 5 và căn 2 + căn 5
c. Căn của 2 căn 3 và căn của 3 căn 2
d. 4- căn 3 và 6- căn 5
Bài 2:Tìm giá trị nhỏ nhất
a. x^2 -2x +2
b. x^2 +x+1
c. -căn x +x
Bài 3: tìm giá trị nhỏ nhất
a. -x^2 +2x-2
b. căn x -x
Bài 1:
\(a\)) \(4\) và \(\sqrt{15}\)
Vì \(16>15\) nên \(\sqrt{16}>\sqrt{15}\)
\(\Rightarrow4>\sqrt{15}\)
\(b\)) \(5\) và \(\sqrt{2}+\sqrt{5}\)
Ta có: \(\left(\sqrt{2}+\sqrt{5}\right)^2=2+2\sqrt{10}+5=2\sqrt{10}+7\)
\(5^2=25\)
Suy ra: \(\left(\sqrt{2}+\sqrt{5}\right)^2-5^2=2\sqrt{10}+7-25\)
\(=2\sqrt{10}-18\)
\(=\sqrt{40}-\sqrt{324}< 0\)
Vậy \(5>\sqrt{2}+\sqrt{5}\)
1: \(c\)) Căn của 2 căn 3 và căn của 3 căn 2
Ta có: \(\sqrt{2\sqrt{3}}^4=2\sqrt{3}^2=12\)
\(\sqrt{3\sqrt{2}}^4=3\sqrt{2}^2=18\)
Vì \(12< 18\) nên \(\sqrt{2\sqrt{3}}^4< \sqrt{3\sqrt{2}}^4\)
Hay \(\sqrt{2\sqrt{3}}< \sqrt{3\sqrt{2}}\)