Những câu hỏi liên quan
HK
Xem chi tiết
HK
12 tháng 9 2017 lúc 20:31

Cố gắng giúp mik nhé.  Mik đang ôn thi

Bình luận (0)
DA
Xem chi tiết
LF
1 tháng 11 2016 lúc 22:22

áp dụng Bđt bunhiacopski nhé

 

Bình luận (3)
LF
1 tháng 11 2016 lúc 22:41

đề xem lại VT

Bình luận (3)
LF
2 tháng 11 2016 lúc 11:22

đề đúng

\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)

Bình luận (0)
TN
Xem chi tiết
TN
10 tháng 6 2018 lúc 23:47

các bn giúp mk vs nhé :)

Bình luận (0)
KL
Xem chi tiết
PT
Xem chi tiết
NL
4 tháng 3 2021 lúc 20:44

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\sqrt{2}}{2}\Rightarrow sinA=\sqrt{1-cos^2A}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{a}{sinA}=2R\Rightarrow R=\dfrac{a}{2sinA}=\sqrt{2}\)

Bình luận (0)
LQ
Xem chi tiết
H24
Xem chi tiết
H24
5 tháng 6 2021 lúc 10:07

`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`

Bình luận (0)
H24
5 tháng 6 2021 lúc 10:09

`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`

Bình luận (0)
MN
Xem chi tiết
NQ
Xem chi tiết
H24
3 tháng 9 2019 lúc 13:05

Bài 1:

\(a\)) \(4\)\(\sqrt{15}\)

\(16>15\) nên \(\sqrt{16}>\sqrt{15}\)

\(\Rightarrow4>\sqrt{15}\)

\(b\)) \(5\)\(\sqrt{2}+\sqrt{5}\)

Ta có: \(\left(\sqrt{2}+\sqrt{5}\right)^2=2+2\sqrt{10}+5=2\sqrt{10}+7\)

\(5^2=25\)

Suy ra: \(\left(\sqrt{2}+\sqrt{5}\right)^2-5^2=2\sqrt{10}+7-25\)

\(=2\sqrt{10}-18\)

\(=\sqrt{40}-\sqrt{324}< 0\)

Vậy \(5>\sqrt{2}+\sqrt{5}\)

Bình luận (0)
H24
3 tháng 9 2019 lúc 13:23

1: \(c\)) Căn của 2 căn 3 và căn của 3 căn 2

Ta có: \(\sqrt{2\sqrt{3}}^4=2\sqrt{3}^2=12\)

\(\sqrt{3\sqrt{2}}^4=3\sqrt{2}^2=18\)

\(12< 18\) nên \(\sqrt{2\sqrt{3}}^4< \sqrt{3\sqrt{2}}^4\)

Hay \(\sqrt{2\sqrt{3}}< \sqrt{3\sqrt{2}}\)

Bình luận (0)