Những câu hỏi liên quan
LT
Xem chi tiết
KS
2 tháng 8 2018 lúc 20:45

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

                                                đpcm

Tham khảo nhé~

Bình luận (0)
H24
2 tháng 9 2018 lúc 14:25

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
NV
Xem chi tiết
CN
Xem chi tiết
CX
14 tháng 1 2017 lúc 20:22

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Bình luận (0)
BA
Xem chi tiết
BA
20 tháng 7 2019 lúc 16:25

À QUÊN, A',B',C' ĐỐI XỨNG QUA d

Bình luận (0)
LN
Xem chi tiết
NH
10 tháng 1 2018 lúc 19:27

c la lon nhat 

Bình luận (0)
LN
10 tháng 1 2018 lúc 19:40

làm ơn giải rõ giúp mk vì sao c lớn nhất

Bình luận (0)
TT
Xem chi tiết
PK
28 tháng 8 2016 lúc 16:51

4

Bình luận (2)
HU
Xem chi tiết
PK
Xem chi tiết
PM
Xem chi tiết
NL
5 tháng 3 2021 lúc 23:32

Áp dụng BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\ge0\)

\(\Leftrightarrow9abc+18\left(a+b+c\right)\ge12\left(ab+bc+ca\right)+27\)

\(\Leftrightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

Do đó:

\(P=4a^2+4b^2+4c^2+abc\ge4a^2+4b^2+4c^2+\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{3}\left(a^2+b^2+c^2\right)-3\)

\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{9}\left(a+b+c\right)^2-3=13\)

Đề bài bạn viết thiếu số 1 bên vế phải rồi

Bình luận (0)
AH
5 tháng 3 2021 lúc 23:30

Lời giải:

Áp dụng BĐT Schur:

$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)$

$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$

$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$

Do đó:

$4(a^2+b^2+c^2)+abc\geq 4(a^2+b^2+c^2)+\frac{4}{3}(ab+bc+ac)-3$

$=\frac{10}{3}(a^2+b^2+c^2)+\frac{2}{3}(a+b+c)^2-3$

$\geq \frac{10}{9}(a+b+c)^2+\frac{2}{3}(a+b+c)^2-3=13$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
AH
5 tháng 3 2021 lúc 23:30

Bài đúng phải là $4a^2+4b^2+4c^2+abc\geq 13$ nhé bạn.

Bình luận (0)