Dấu = xảy ra khi nào
\(\left(x-3\right)\left(x+5\right)+20\ge4\)
Cho \(x+y\ge6\). CMR: \(x\left(x-1\right)+y\left(y-1\right)\ge12\). Khi nào dấu bằng xảy ra?
Bài giải
Ta có : ( x- 3 ) 2 \(\ge\)0 <=> x2 - 6.x + 9 \(\ge\) 0 <=> x. ( x - 1 ) \(\ge\)5.x-9 .Tương tự : y. ( y - 1 )\(\ge\) 5.y - 9 .
Từ đó : x . ( x - 1 ) + y . ( y - 1 ) \(\ge\) 5. ( x + y ) -18 \(\ge\) 5. 6 - 18 = 12 . Khi x = y = 3 thì đẳng thức xảy ra => đpcm
Bài 2 : Cho hai số dương a và b . Chứng minh \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) . Dấu ''='' xảy ra khi nào ?
Em học lớp 8 nên không chắc lắm, vì đội tuyển có dạng này rồi nên em giúp chị nhé :
Áp dụng BĐT Cauchy cho hai số a,b dương ta có :
\(\left(a+b\right)\ge2\cdot\sqrt{ab}\) (1)
\(\frac{1}{a}+\frac{1}{b}\ge2\cdot\sqrt{\frac{1}{ab}}\) (2)
Nhân vế với vế của BĐT (1) và (2) ta được :
\(\left(a+b\right)\left(\frac{1}{b}+\frac{1}{b}\right)\ge2\cdot\sqrt{ab}\cdot2\cdot\sqrt{\frac{1}{ab}}=4\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\) (đpcm)
Áp dụng bất đẳng thức Côsi cho 2 số dương:
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}>0\) và \(a+b\ge2\sqrt{ab}>0\)
nên \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{\frac{1}{ab}}.2\sqrt{ab}=4\)
Dấu đảng thức xảy ra \(\Leftrightarrow a=b\)
Cách khác: Ta có thể viết \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương liên tiếp:
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Câu 20:
Max \(P=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x=\sqrt{\left(2x+1\right)\left(x+2\right)}+\sqrt{4\left(x+3\right)}-2x\le\frac{2x+1+x+2}{2}+\frac{x+3+4}{2}-2x=5.\)
=>Max P=5
Dấu = xảy ra khi \(\hept{\begin{cases}2x+1=x+2\\x+3=4\end{cases}< =>x=1.}\)
CMR :
a, \(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\ge8\)
b, \(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge4\)
c, \(\left|x-1\right|+2\left|x-3\right|+\left|x-5\right|\ge4\)
Cần gấp lời giải đầy đủ dễ hiểu và đáp án nhé
\(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|=\left(\left|x-1\right|+\left|x-7\right|\right)+\left(\left|x-3\right|+\left|x-5\right|\right)\\ \)
\(=\left(\left|x-1\right|+\left|7-x\right|\right)+\left(\left|x-3\right|+\left|5-x\right|\right)\)
\(\ge\left|x-1+7-x\right|+\left|x-3+5-x\right|=\left|6\right|+\left|2\right|=8\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=\left(\left|x+1\right|+\left|x+3\right|\right)+\left|x+5\right|=\left(\left|x+1\right|+\left|3-x\right|\right)+\left|x+5\right|\)
\(\ge\left|x+1+3-x\right|+\left|x+5\right|=\left|4\right|+\left|x+5\right|=4+\left|x+5\right|\ge4\)
\(\left|x-1\right|+2\left|x-3\right|+\left|x-5\right|=\left(\left|x-1\right|+\left|x-5\right|\right)+2\left|x-3\right|=\left(\left|x-1\right|+\left|5-x\right|\right)+2\left|x-3\right|\)
\(\ge\left|x-1+5-x\right|+2\left|x-3\right|=\left|4\right|+2\left|x-3\right|=4+2\left|x-3\right|\ge4\)
Lâu lâu đăng bài giải trí!
Chứng minh bất đẳng thức sau:
\(3\left(x^2-x+1\right)\left(y^2-y+1\right)\ge2\left(x^2y^2-xy+1\right);\forall x,y\inℝ\)
Dấu "=" xảy ra khi nào???
Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)
=> qed
??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ???
Nguyễn Linh Chi còn khúc dưới nữa mà cô, tại nó dài quá nên olm ko hiển thị hết trng một dòng. Mà bài đó em cũng làm xàm:)
CMR: Với mọi a,b >0
Thì \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Em chỉ cần nhất cái chỗ dấu "=" xảy ra khi nào thôi ạ, nên mong mấy pro giải chi tiết giùm em chút~
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1
Dấu "=" xảy ra khi \(a=b\)
Cauchy đi mài ._.
Vì a, b > 0 nên áp dụng bđt Cauchy cho :
Bộ số a, b ta được :\(a+b\ge2\sqrt{ab}\)
Bộ số 1/a, 1/b ta được :\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)
Nhân hai vế tương ứng ta có đpcm
Dấu "=" xảy ra <=> a = b
Bác ơi, sao chỗ cuối đấy ra được là : Dấu bằng xảy ra <=> a=b vậy bác?
Cho \(x\ge2;y\ge2.\)Chứng minh \(x\sqrt{2\left(y-2\right)}+y\sqrt{2\left(x-2\right)}\le xy\).Dấu bằng xảy ra khi nào ?
cho hàm số \(y=\frac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5}{x^2+3x-4}\)
a, tìm tập xác định của hàm số
b, chứng minh y<=3. chỉ rõ dấu bằng xảy ra khi nào
Cho x,y,z dương. Chứng minh \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)lớn hơn hoặc bằng 9. Dấu = xảy ra khi nào
Nguyên trang bất đăng thức Bunhacoxki rồi.