chứng minh:3^1+3^2+3^3+...+3^99+3^100 chia hết cho 4
cho A=1+3+3^2+3^3+3^4+...+3^99+3^100.chứng minh A chia hết cho 4
\(A=1+3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(A=1+3+\left(3^2+3^3+3^4+...+3^{99}+3^{100}\right)\)
\(A=1+3\)
\(A=4\)
→ \(4\) ⋮ 4
⇒ \(A\)⋮\(4\)
Chứng minh :
A = 5 + 5^2 + 5^3 + . . . + 5^99 + 5^100 chia hết cho 6
B = 2 + 2^2 + 2^3 + . . . + 2^99 + 2^100 chia hết cho 31
C = 3 + 3^2 + 3^3 + . . . + 3^60 chia hết cho 4, cho 13
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
chứng minh ( 3+3 mũ 2+3 mũ 3+3 mũ 4+....+3 mũ 99+3 mũ 100) chia hết cho 4
Chứng minh 31+32+33+34+............+399+3100 chia hết cho 4
Đặt A=\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
A=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
A=\(3^1\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
A=\(3^1\cdot4+3^3\cdot4+...+3^{99}\cdot4\)
A=\(4\left(3^1+3^3+...+3^{99}\right)⋮4\left(đpcm\right)\)
Chứng minh:31+32+33+....+399+3100 chia hết cho 4
Có : 3^1 + 3^2 + 3^3 + 3^4 + ..... + 3^99 + 3^100
= (3^1+3^2) + (3^3+3^4) + .... + (3^99+3^100)
= 3^1.(1+3) + 3^3.(1+3) + .... + 3^99.(1+3)
= 3^1.4 + 3^3.4 + .... + 3^99.4
= 4.(3^1+3^3+.....+3^99) chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}.3^{100}\right)\)
\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow A⋮4\)
\(\RightarrowĐPCM\)
\(A=3^1+3^2+...+3^{99}+3^{100}\)
\(A=3.\left(1+3\right)+...+3^{99}.\left(1+3\right)\)
\(A=3.4+...+3^{99}.4\)
\(A=4.\left(3+...+3^{99}\right)\)
\(\Rightarrow A⋮4\left(ĐPCM\right)\)
cho số A= 3+3^2+3^3+3^4+...+3^98+3^99+3^100. Chứng minh rằng A chia hết cho 120
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
B= 1 + 3^1 + 3^2 + 3^3 +.....+ 3^99 + 3^100
Chứng minh B chia hết cho 52
chứng minh 3 mũ 1 + 3 mũ 2 + 3 mũ 3 +..... + 3 mũ 99 + 3 mũ 100 chia hết cho 2
M= 1+3+3^2+3^3+...+3^98+3^99+3^100. chứng minh rằng M chia hết cho 13?
dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay
se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)
=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13
vậy M chia hết cho 13
tick cho mình nhé!