Những câu hỏi liên quan
CT
Xem chi tiết
ZN
28 tháng 3 2021 lúc 21:47

\(\frac{2n+1}{3n+2}\)

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow6n+4-6n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

\(\frac{4n+1}{6n+1}\)

Gọi \(d\inƯC\left(4n+1;6n+1\right)\)

Ta có :

\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow12n+3-12n+2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NT
19 tháng 8 2023 lúc 21:54

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

Bình luận (0)
NL
28 tháng 2 2024 lúc 19:38

1.    a. Tính :

1.    a. Tính :

Bình luận (0)
JS
Xem chi tiết
KM
2 tháng 8 2018 lúc 20:23

Đặt d là ước chung lớn nhất của 2n+1 và 6n+5

Ta có \(2n+1⋮d\Rightarrow3.\left(2n+1\right)⋮d\Rightarrow6n+3\)

Mặt khác \(6n+5⋮d\)

Do đó \(6n+5-6n-3⋮d\Rightarrow2⋮d\Rightarrow d=\left\{1;2\right\}\)

Mặt khác 6n+5 là số lẻ nên d = 1

Khi đó 6n + 5 và 2n +1 là hai số nguyên tố cùng nhau hay phân số A tối giản

Bình luận (0)
ML
2 tháng 8 2018 lúc 20:23

Thử vài trường hợp là ra ngay !!!

Bình luận (0)
NK
3 tháng 4 2020 lúc 17:40

kho the ai lam dc

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
HT
Xem chi tiết
DL
Xem chi tiết
KA
28 tháng 10 2021 lúc 21:35

6n2 + 6n + 1/4n + 1

= 6n2 + 6n1 + 1/4n1 + 11

Xem xét ta thấy n1 là số tự nhiên mũ 1 nên không thể gộp lại để tính

= 61 + 62 + 11

= 64 + 42 + 11

= 101

Rút gọn lũy thừa thành : 10.10 = 2.5

Bình luận (0)
 Khách vãng lai đã xóa
DL
28 tháng 10 2021 lúc 21:48

bạn ơi nhưng đây là đang hỏi chứng minh mà :(

Bình luận (0)
 Khách vãng lai đã xóa
NY
Xem chi tiết
BD
28 tháng 2 2021 lúc 16:30

fhehuq3

Bình luận (0)
 Khách vãng lai đã xóa

a) \(\frac{n}{2n+1}\)

Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n;2n+1\right)=1\)

\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản

b) \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa

c) \(\frac{3n+2}{5n+3}\)

Gọi \(d=ƯCLN\left(3n+2;5n+3\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+2;5n+3\right)=1\)

\(\Rightarrow\)Phân số \(\frac{3n+2}{5n+3}\)là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
VL
Xem chi tiết
XO
19 tháng 4 2020 lúc 17:16

a)Gọi ƯCLN(n + 1 ; 2n + 3) = d

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d

\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
11 tháng 4 2016 lúc 14:40

gọi d là ƯCLN của 6n+2 và 2n+1

=> 6n+2 chia hết cho d và 2n+1 chia hết cho d

=>6n+2 chia hết cho d và 3(2n+1) = 6n+3 chia hết cho d

=>(6n+3) - (6n+2) chia hết cho d

=> 6n+ 3 - 6n -2 chia hết cho d=>1 chia hết cho d => d = 1

=> ƯCLN(6n+2;2n+1) = 1=>6n+2/2n+1 là phân số tối giản => đpcm

Bình luận (0)