chứng minh rằng:
\(\left(x^4-x^3.y+x^2.y^2-x.y^3+y^4\right).\left(x+4\right)=x^5+y^5\)
Chứng minh rằng nếu \(2\left(x.y\right)=5\left(y+z\right)=3\left(z+x\right)\)thì \(\frac{x-y}{4}=\frac{y-z}{5}\)
...Trả lời giúp nha, mình like cho
Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)
a, Ta có:\(\left(4x^2-2xy+y^2\right)\left(2x+y\right)\)
\(=8x^3+4x^2y-4x^2y-2xy^2+2xy^2+y^3\)
\(=8x^3+y^3\)
\(\Rightarrow\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b,Ta có: \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)
(rồi bạn nhóm vào trừ cho nhau)
\(=x^7+x^5+1\)
a) (4x2 - 2xy + y2)(2x + y)
= 4x2.2x + 4x2.y + (-2xy).2x + (-2xy).y + y2.2x + y2.y
= 8x2 + 4x2y - 4x2y - 2xy2 + 2xy2 + y3
= 8x2 + (4x2y - 4x2y) + (-2xy2 + 2xy2) + y3
= 8x2 + y3 (đpcm)
b) tương tự
C=\(x\)\(\left[x^2-y\right]\)x\(\left[x^3-2y^2\right]\)x\(\left[x^4-3y^3\right]\)x\(\left[x^5-4y^4\right]\)tại \(x=2,y=-2\)
D=\(x^2\left[x+y\right]\)-\(y^2\)\(\left[x+y\right]\)+\(\left[x^2-y^2\right]\)+2\(\left[x+y\right]\)+3 biết rằng x+y+1=0
M=\(\left[x+y\right]\)x\(\left[y+z\right]\)x\(\left[x+z\right]\)biết ranhwfx+y+z=xyz=2
a: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-2\cdot4=0\)
=>\(C=x\left(x^2-y\right)\left(x^3-2y^2\right)\left(x^4-3y^3\right)\left(x^5-4y^4\right)=0\)
b: x+y+1=0
=>x+y=-1
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=x^2\cdot\left(-1\right)-y^2\left(-1\right)+\left(x^2-y^2\right)+2\cdot\left(-1\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)
=1
Chứng minh rằng nếu: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\) ) thì \(\frac{x-y}{4}=\frac{y-z}{5}\)
Chứng minh rằng : nếu \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\) thì \(\frac{x-y}{4}=\frac{y-2}{5}\)
\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)
\(\Rightarrow\text{ }\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)
\(\Rightarrow\text{ }\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\text{ }\left(1\right)\)
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\text{ }\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{y-z}{5}=\frac{x-y}{4}\)
cho 2 số dương x,y thỏa mãn x+y=1
chứng minh rằng \(P=6\left(x^3+y^3\right)+8\left(x^4+y^4\right)+\frac{5}{xy}\ge\frac{45}{2}.\)
Áp dụng BĐT AM-GM ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\)
Suy ra: \(P=6\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+8\left[\left(x^2+y^2\right)^2-2\left(xy\right)^2\right]+\frac{5}{xy}\)
\(\ge6\left(1-\frac{3}{4}\right)+8\left(\frac{1}{4}-\frac{1}{8}\right)+\frac{5}{\frac{1}{4}}\) (Do x+y=1) \(\Rightarrow P\ge6-\frac{9}{2}+2-1+20=\frac{45}{2}\)(đpcm).
Dấu "=" xảy ra <=> x=y=1/2.
77. Chứng minh rằng nếu: \(2\left(x+y\right)=5\left(y+x\right)=3\left(z+x\right)\) thì \(\frac{x-y}{4}=\frac{y-z}{5}\)
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
\(\Leftrightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}=\frac{x+y-z-x}{\frac{1}{2}-\frac{1}{3}}=\frac{z+x-y-z}{\frac{1}{3}-\frac{1}{5}}\)
\(\Leftrightarrow\frac{y-z}{\frac{1}{2}-\frac{1}{3}}=\frac{x-y}{\frac{1}{3}-\frac{1}{5}}\Rightarrow\frac{y-z}{\frac{1}{6}}=\frac{x-y}{\frac{2}{15}}\)
\(\Rightarrow6\left(y-z\right)=\frac{15\left(x-y\right)}{2}\)
\(\Leftrightarrow2\left(y-z\right)=\frac{5\left(x-y\right)}{2}\)
Nhân cả hai vế với \(\frac{1}{10}\) ta có:
\(\frac{2\left(y-z\right)}{10}=\frac{5\left(x-y\right)}{20}\Leftrightarrow\frac{y-z}{5}=\frac{x-y}{4}\)(ĐPCM)
làm thì không biết đúng không mà chắc cugx được nhưng dài khi mô đi học đưa giấy cho chứ ghi trên này mỏi lắm
cho các số dương x,y,z chứng minh rằng:
\(\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}\)+\(\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}\)+\(\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}\)≥\(\dfrac{3}{4}\)
Bài 3. Chứng minh các đẳng thức sau:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c. \(\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)=a^4-b^4\)
đ. \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-b^3\)
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)
c)
VT=(a+b)(a3-a2b+ab2-b3)=a4-a3b+a2b2-ab3+a3b-a2b2+ab3-b4 =a4-b4=VP
=> Đpcm
d) VT=(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3 khác VT
=> đẳng thức ko đúng