Những câu hỏi liên quan
NK
Xem chi tiết
PL
31 tháng 7 2018 lúc 9:55

\(D=2x^2+4y^2+4xy+2x+4y+9=x^2+4xy+4y^2+2x+4y+1+x^2+8=\left(x+2y\right)^2+2\left(x+2y\right)+1+x^2+8=\left(x+2y+1\right)^2+x^2+8\)

Do : \(\left\{{}\begin{matrix}\left(x+2y+1\right)^2\ge0\forall xy\\x^2\ge0\forall x\end{matrix}\right.\)\(\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Leftrightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

\(\Rightarrow D_{Min}=8."="\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
XL
Xem chi tiết
H24
25 tháng 2 2022 lúc 19:43

undefined

Bình luận (1)
SK
25 tháng 2 2022 lúc 19:47

B=\(2x^2-4xy-2x+4y^2+2013\)

\(=x^2-4xy+4y^2+x^2-2x+1+2012\)

\(=\left(x-2y\right)^2+\left(x-1\right)^2+2012\ge2012\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

                              \(\left(x-2y\right)^2=0\Leftrightarrow2y=1\Leftrightarrow y=\dfrac{1}{2}\)

Vậy \(Min_B=2012\) khi x=1 , y=\(\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
TP
6 tháng 6 2017 lúc 23:08

Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!

Bình luận (0)
BD
7 tháng 6 2017 lúc 3:25

\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

khi \(x=\frac{1}{3},y=\frac{1}{6}\)

Bình luận (0)
TA
7 tháng 6 2017 lúc 11:38

Ta có:

\(4x^2+4y^2−4xy−2x\) = \(x^2-4xy+4y^2+2x^2+x^2-2x+1-1\)

=\(\left(x-2y\right)^2+2x^2+\left(x-1\right)^2-1\)

\((x-2y)^2\ge0\);\(2x^2\ge0\);\((x-1)^2\ge0\)

\(\Rightarrow\left(x-2y\right)^2+2x^2+\left(x-1\right)^2-1\ge-1\)

Min 4x2+4y2−4xy−2x là -1 khi \(\hept{\begin{cases}x-2y=0\\x-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}\)

Bình luận (0)
NC
Xem chi tiết
NT
12 tháng 3 2022 lúc 22:18

\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)

\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)

Dấu ''='' xảy ra khi x = 4 ; y = -2 

Bình luận (0)
BM
Xem chi tiết
BM
Xem chi tiết
NT
Xem chi tiết
H24
25 tháng 6 2019 lúc 9:51

\(\text{x}^2+y^2-\text{x}+4y+5=\left(\text{x}^2-\text{x}+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}=\left(\text{x}-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\) 

\(\ge0+0+\frac{3}{4}=\frac{3}{4}\).Dâu"=" xayr ra khi: 

\(\Leftrightarrow\hept{\begin{cases}\text{x}-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\text{x}=\frac{1}{2}\\y=-2\end{cases}}\)

Bình luận (0)
DT
Xem chi tiết