Những câu hỏi liên quan
HL
Xem chi tiết
TM
Xem chi tiết
H24
27 tháng 3 2020 lúc 8:31

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

Bình luận (0)
 Khách vãng lai đã xóa
PB
27 tháng 3 2020 lúc 9:14

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

Bình luận (0)
 Khách vãng lai đã xóa
LK
27 tháng 3 2020 lúc 10:53

Bài 4:

Ta đặt: \(S=6^m+2^n+2\)

TH1: n chẵn thì:

\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)

Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)

Đồng thời S là scp

Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)

\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)

Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ

Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)

Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)

Thế vào ban đầu: \(S=8+2^n=36k^2\)

Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)

\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)

\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)

Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))

Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)

TH2: n là số lẻ

\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)

\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn

\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ

Chia tiếp thành 2TH nhỏ: 

TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ

Ta thu đc: m=1 và thế vào ban đầu

\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)

\(\Leftrightarrow2^{n-2}+2=k^2\)

Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)

Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)

\(\Leftrightarrow2^{n-3}+1=2t^2\)

\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3

Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)

TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ

Suy ra: n=1

Thế vào trên: \(6^m+4=4k^2\)

\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)

Và \(6^p-6^q=4\)

\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)

\(\Rightarrow k\notin Z\)

Vậy \(\left(m;n\right)=\left(1;3\right)\)

P/S: mk không kiểm lại nên có thể sai

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
TA
17 tháng 6 2023 lúc 21:49

bằng 3 nha

 

Bình luận (0)
US
Xem chi tiết
NT
21 tháng 7 2023 lúc 23:55

a: M=x^2y^2(5a-1/2a+7a-1)

=(23/2a-1)*x^2y^2

M>=0

=>23/2a-1>=0

=>23/2a>=1

=>a>=2/23

b: M<=0

=>23/2a-1<=0

=>a<=2/23

c: a=2 thì M=22x^2y^2

M=84

=>x^2y^2=84/22=42/11

mà x,y nguyên

nên \(\left(x,y\right)\in\varnothing\)

Bình luận (0)
US
Xem chi tiết
LU
20 tháng 7 2023 lúc 12:44

M = 5x^2y^2+(-1/2ax^2y^2)+7ax^2+(-x^2y^2)

M=(5a+(-1/2a)+7a+(-1)) . x^2y^2

M= (23/2a - 1) x^2y^2

a)voi gia tri nao cua a thi M ko am

⇒M ≥ 0 ⇒(23/2a - 1).x^2y^2 ≥0

  ⇒23/2a - 1 ≥ 0 vi x^2y^2 ⇒0 ∀ x;y

     ⇒23/2a ≥ 0

     ⇒a ≥ . 2/23

     ⇒a ≥ 2/23

Vay a ≥ 2/23 thi M ko am voi moi x;y

b)Voi gia tri nao cua a thi M ko dg

⇒M ≤ 0 ⇒ (23/2a - 1).x^2y^2 ≤ 0 ∀ x.y

⇒23/2a ≤ 1

⇒ a ≤ 2/23

Voi moi a ≤2/23 thi M ko duong voi moi x;y

c) Thay a=2 vao M ta dc:

    M= (23.2:2 -1).x^2y^2

    M=22x^2y^2

De M=88 ⇒22x^2y^2 =88 ⇒x^2y^2=4

                ⇒(xy^2)= 2^2 ⇒ xy=2

                ⇒x= 2⇒y=1 ; x=1⇒y=2 ; x=-2 ⇒y=-1 ; x=-1y⇒-2

Vay(x;y)= ( (2;1); (1;2); (-2;-1); (-1;-2) thi M = 88

 

(ko danh dc dau cua chu ban thong cam cho mik)

                   

Bình luận (0)
H24
Xem chi tiết
DV
Xem chi tiết
ND
Xem chi tiết
H24
17 tháng 4 2017 lúc 12:58

mọi người t ủng hộ mk nha

Bình luận (0)
NL
Xem chi tiết
HK
26 tháng 3 2018 lúc 12:43

M=5ax2y2+(-1/22y2)+7ax2y2+(-x2y2)

M=[5a+(-1/2a)+7a+(-1)]x2y2

M=(23/2a-1)x2y2

a; Nếu M không âm với mọi x, y thì (23/2a-1) phải lớn hơn hoặc bằng 0 hay a lớn hơn hoặc bằng 23/2

b; Tương tự thì (23/2a-1) phải bé hơn hoặc bằng 0 hay a bé hơn hoặc bằng 23/2

Bình luận (0)