Những câu hỏi liên quan
NQ
Xem chi tiết
NQ
20 tháng 3 2020 lúc 9:31

các bạn trả lời đầy đủ hộ mình nha.

mình xin cảm ơn.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LP
9 tháng 8 2023 lúc 22:02

Ta đặt \(a^2+4b+3=k^2\) 

\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)

Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)

Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)

\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)

\(\Leftrightarrow c^2+c+1+b=l^2\)

Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.

Nếu \(c< b< 2c+1\) thì

\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.

Do vậy, \(c=b\) hay \(a=2b+1\)

Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.

 

Bình luận (0)
TM
Xem chi tiết
H24
Xem chi tiết
NL
2 tháng 6 2021 lúc 17:55

\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)

TH1: \(a=b\) thì \(ab=a^2\) là SCP

TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)

\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP

Bình luận (0)
DK
Xem chi tiết
TK
Xem chi tiết
NK
8 tháng 5 2019 lúc 21:01

Đặt k=a2+b2ab+1(k∈Z)k=a2+b2ab+1(k∈Z)  
Giả sử kk không là số chính phương 
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu 
S={(a,b)∈NxN|a2+b2ab+1=k}S={(a,b)∈NxN|a2+b2ab+1=k} 
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+BA+B đạt min 
Giả sử A≥B>0A≥B>0 . Cố định BB ta còn số nữa khác AA thảo phương trình k=x+B2xB+1k=x+B2xB+1 
⇔x2−kBx+B2−k=0⇔x2−kBx+B2−k=0 phương trình có nghiệm AA
Theo Viet : {A+x2=kBA.x2=B2−k{A+x2=kBA.x2=B2−k 
Suy ra x2=kB−A=B2−kAx2=kB−A=B2−kA 
Dễ thấy x2x2 nguyên. 
Nếu x2<0x2<0 thì x22−kBx2+B2−k≥x22+k+B2−k>0x22−kBx2+B2−k≥x22+k+B2−k>0 (vô lí) . Suy ra x2≥0x2≥0 do đó (x2,B)∈S(x2,B)∈S  
Do A≥B>0⇒x2=B2−kA<A2−kA<AA≥B>0⇒x2=B2−kA<A2−kA<A 
Suy ra x2+B<A+Bx2+B<A+B (trái với giả sử A+BA+B đạt min) 
Suy ra kk là số chính phương

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
H24
27 tháng 5 2021 lúc 8:31

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

Bình luận (1)
TH
27 tháng 5 2021 lúc 10:01

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

Bình luận (0)
TC
Xem chi tiết