Những câu hỏi liên quan
TH
Xem chi tiết
MT
19 tháng 7 2015 lúc 13:29

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

ta có:

(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8

b) gọi số lẽ đó là 2k+1

ta có:

(2k+1)2-1=(2k+1-1)(2k+1+1)

=2k.(2k+2)

=4k2+4k

Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2 

=>4k2+4k chia hết cho 8

Vậy  Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

Bình luận (0)
TA
19 tháng 7 2015 lúc 13:13

de thi lam di 

noi vay toi cung noi duoc

 

Bình luận (0)
MT
19 tháng 7 2015 lúc 13:17

thang Tran làm ik tớ ko làm

Bình luận (0)
NT
Xem chi tiết
CT
25 tháng 6 2015 lúc 9:14

Gọi 2k+1 va 2p+1 la các số lẻ 
hieu cac binh phuong cua 2 so le la`: 
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p) 
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p... 
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8 
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

Bình luận (0)
MT
25 tháng 6 2015 lúc 9:13

sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8

Bình luận (0)
CT
Xem chi tiết
AM
25 tháng 6 2015 lúc 9:18

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

Bình luận (0)
H24
25 tháng 6 2015 lúc 9:19

Giả

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8.

Bình luận (0)
DV
25 tháng 6 2015 lúc 9:21

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

đúng ko

Bình luận (0)
VU
Xem chi tiết
PN
Xem chi tiết
KT
20 tháng 7 2018 lúc 20:47

Gọi 2 số lẻ liên tiếp là:   \(2k-1\)và   \(2k+1\)

Xét hiệu:    \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)

                  \(=4k^2+4k+1-\left(4k^2-4k+1\right)\)

                  \(=8k\) \(⋮\)\(8\)

\(\Rightarrow\)\(A\)\(⋮\)\(8\)

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

Bình luận (0)
DN
Xem chi tiết
ND
27 tháng 9 2016 lúc 17:54

Ta gọi 2 số lẻ liên tiếp đó là n+1;n+3

=> Hiệu hai bình phương hai số đó là:

(n+3)2-(n+1)2

=(n+3-n-1).(n+3+n+1)

=2.(2n+4)

=2.(2(n+2))

=2.2.(n+2)

=4.(n+2)

Bình luận (0)
PN
Xem chi tiết
NN
Xem chi tiết
TP
30 tháng 8 2018 lúc 15:30

Gọi 2k+1 va 2p+1 là các số lẻ 
=> Hiệu bình phương của chúng là :
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p) 
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p)... 
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8 
=> ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

=> đpcm

Bình luận (0)
DA
30 tháng 8 2018 lúc 15:38

Cách 1:
Gọi 2 số lẻ liên tiếp là : 2k+1 ; 2k-1 (k là số tự nhiên; k>0)

Ta có: (2k+1)2−(2k−1)2(2k+1)2−(2k−1)2

= 4k2+4k+1−(4k2−4k+1)4k2+4k+1−(4k2−4k+1)

=8k⋮88k⋮8

\Rightarrow đpcm

Cách 2

Gọi số lẻ bất kỳ là : 2k+1

Xét (2k+1)2=4k2+4k+1=4k(k+1)+1(2k+1)2=4k2+4k+1=4k(k+1)+1

Mà k; k+1 là 2 số tự nhiên liên tiếp

Nên 4k(k+1)+1 chia 8 dư 1

Do vậy bình phương một số lẻ bất kỳ chia 8 dư 1

Ta mở rộng bài toán

Hiệu bình phương 2 số lẻ bất kỳ đều chia hết cho 8

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2018 lúc 16:38

G ọ i   h a i   s ố   l ẻ   l i ê n   t i ế p   l à   :       2 k - 1   ;   2 k + 1 k ∈ N *   T h e o   b à i   r a   t a   c ó 2 k + 1 2 - 2 k - 1 2 =   4 k 2 + 4 k + 1 - 4 k 2   + 4 k   -   1 = 4 k   +   4 k =   8 k   ⋮   8

Đáp án cần chọn là :A

Bình luận (0)