phân tích đa thức sau thành nhân tử x^2 y^2 ( y-x) + y^2z^2 (z-y)- x^2 z^2 ( z-x)
Phân tích đa thức thành nhân tử 4xy(x+y)(x+y+z)(x+z) +y^2z^2
phân tích đa thức thành nhân tử
[2(x-2y+z)3+4(2y-x-z)2 ]: (2z-4y+2x)
[(12(y-z)4-3(2-y)5]:6(y-z)2
b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)
Phân tích đa thức thành nhân tử:
\(a,x^2-x-y^2+y\)
\(b,x^2+2x+2z-z^2\)
\(a,x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\\---\\b,x^2+2x+2z-z^2\\=(x^2-z^2)+(2x+2z)\\=(x-z)(x+z)+2(x+z)\\=(x+z)(x-z+2)\\\text{#}Toru\)
Lời giải:
a. $x^2-x-y^2+y=(x^2-y^2)-(x-y)=(x-y)(x+y)-(x-y)=(x-y)(x+y-1)$
b. $x^2+2x+2z-z^2=(x^2+2x+1)-(z^2-2z+1)=(x+1)^2-(z-1)^2$
$=(x+1-z+1)(x+1+z-1)=(x-z+2)(x+z)$
\(a,x^2-x-y^2+y\\ =\left(x^2-y^2\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\\ ---\\ b,x^2+2x+2z-z^2\\ =\left(x^2+2x+1\right)-\left(z^2-2z+1\right)\\ =\left(x+1\right)^2-\left(z-1\right)^2\\ =\left[\left(x+1\right)+\left(z-1\right)\right].\left[\left(x+1\right)-\left(z-1\right)\right]\\ =\left(x+z\right)\left(x-z+2\right)\)
phân tích đa thức sau thành nhân tử x^2 y^2(y-x)+y^2 z^2(z-y)-z^2 x^2(z-x)
x2(y - z) + y2(z - x) + z2(x - y)
= z2(x - y) + x2 y - x2 z + y2 z - y2 x
= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)
= (x - y)(z2 + xy - zx - zy)
= (x - y)[(z2 - zx) + (xy - zy)]
= (x - y)(z - x)(z -y)
phân tích đa thức thành nhân tử:
\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)+z^2x^2\left(z-x\right)\)
Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:
\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)
\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)
\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)
\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)
phân tích đa thức sau thành nhân tử tổng hợp 2x^2+2y^2-x^2z+z-y^2z-2
\(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
\(2x^2+2y^2-x^2z-y^2z-2=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)=\left(2-z\right)\left(x^2+y^2-1\right)\)
Phân tích đa thức sau thành nhân tử
x (y^2-z^2) + y(z^2-x^2) +z (x^2-y^2)
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=x\left(y^2-z^2\right)-y\left(y^2-z^2+x^2-y^2\right)+z\left(x^2-y^2\right)\)
\(=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
chúc bn hc tốt ^^
Phân tích đa thức sau thành nhân tử:
x(y^2+z^2) + y(z^2+x^2) + z(x^2+y^2) + 2xyz
Phân tích đa thức thành nhân tử :
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2.\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)