Tam giac ABC co so do cac goc A, B, C ti le voi 3;4;8. Tinh so do cac goc cua tam giac. ( de cua mik ghi dung zoi do. Cac pan giai gium mik nha. Mik se like cho pan nao tra loi dung nhat )
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giac ABC co cac goc ngoai cua tam giAC tai A,B,C ti le voi 4,5,6. cac goc trong cua tam giac ti le voi so nao
Theo tính chất góc ngoài tam giác = tổng 2 góc trong không kề với nó.
Ta có
( B + C ):( A + C ):( A + B ) = 4:5:6
=> ( B + C )/4 = ( A + C )/5 = ( A + B )/6
Theo tính chất tỉ lệ thức kết hợp với tổng 3 góc trong tam giác = 360 độ.
=> ( B + C )/4 = ( B + C + A + C + A + B )/( 4 + 5 + 6 ) = 360/15 = 24
=> B + C = 96 (1)
Tương tự ta có
A + C = 120 (2)
A + B = 144 (3)
Kết hợp (1);(2);(3) ta có
A = 84; B = 60; C = 36
=> A:B:C = 84:60:36 = 7:5:3
tích nha lần sau mik sẽ giúp tiếp
tam giac ABC co so do cac goc A,B,C lan luot ty le voi 3;4;5 tinh so do cac goc cua tam giac A,B,C
Can giai dap nhan thank youu
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\dfrac{180^0}{12}=15^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=45^0\\\widehat{B}=60^0\\\widehat{C}=75^0\end{matrix}\right.\)
gọi số đo các góc ˆ A , ˆ B , ˆ C lần lượt là x,y,z
theo đề ta có: x : y : z = 3 : 4 : 5
⇒ x/3 = y/4 = z/5 ; x + y + z = 180 độ
Áp dụng tính chất của dãy tỉ số bằng nhau
ta có: \(\dfrac{x+y+z}{3+4+5}\)= \(\dfrac{180}{12}\)= 15
vì \(\dfrac{x}{3}\)= 15 ⇒ x = 15.3 = 45 ⇒ x = 45
\(\dfrac{y}{4}\) = 15 ⇒ y = 15.4 = 60 ⇒ y = 60
\(\dfrac{z}{5}\) = 15 ⇒ z = 15.5 = 75 ⇒ z = 75
vậy số đo ˆ A = 45 o , ˆ B = 60 o , ˆ C = 75 o
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)
Do đó: a=45; b=60; c=75
cho tam giac ABC co so do cac goc A,B,C ti e voi 3,2,1.
a.tinh so do cac goc cua tam giac ABC.
b. lay diem D a trung diem cua AC ,ke DM vuong gc voi AC (M thuoc BC). cm rang tam giac ABM la tam giac deu
Cho tam giac ABC co A va B ti le voi 3 va 15 ,C=4B .tinh cac goc cua tam giac
Theo bài ra:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{15};\frac{\widehat{C}}{4}=\frac{\widehat{B}}{1}\Rightarrow\frac{\widehat{C}}{60}=\frac{\widehat{B}}{15}\)
=> \(\frac{\widehat{A}}{3}=\frac{\widehat{C}}{60}=\frac{\widehat{B}}{15}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+60+15}=\frac{180^0}{78}=\frac{30^o}{13}\)
Em tính tiếp nhé
a) Tim dien tich manh dat hcn biet chieu rong bang 2/3 chieu dai va chu vi la 30 cm. b) Tam giac ABC co so do cac goc A,B,C ti le voi 3,4,8. Tinh so do cac goc tam giac.
cho tam giac ABC co so do \(\widehat{A}\) ;\(\widehat{B}\) ;\(\widehat{C}\) ti le thuan 7;7;16
tinh so do cac goc cua tam giac ABC
Gọi số đo ba góc A; B; C lần lượt là:
A ; B; C
Vì A, B , C tỉ lệ thuận với 7, 7, 16 và A+B+C=1800(tổng ba góc của một tam giác)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{A}{7}\)+\(\dfrac{B}{7}\)+\(\dfrac{C}{16}\)=\(\dfrac{A+B+C}{7+7+16}\)=\(\dfrac{180}{30}\)=6
⇒\(\dfrac{A}{7}\)=6 ⇒A= 7.6=42
⇒\(\dfrac{B}{7}=6\Rightarrow B=7.6=42\)
⇒\(\dfrac{C}{16}=6\Rightarrow\)C=16.6=96
Vậy số đó các góc A;B;C lần lượt là:
42 độ ; 42độ; 96 độ
(Mình không biết ghi cái kí hiệu độ nên bạn xem đỡ nha)
tinh so do goc hinh tam giac ABC biet goc b,c,a voi ti le 7,3,8
gọi số đo 3 góc của tam giác lần lượt là a,b,c => a+b+c = 180 độ( định lí tổng 3 góc trong tam giác
tỉ lệ với 2;3;5
=> a2=b3=c5a2=b3=c5
= a+b+c2+3+5a+b+c2+3+5 (tính chất dãy tỉ số bằng nhau)
= 1801018010(do a+b+c=180 độ)
= 18 độ
=> a = 18.2=36 độ
b = 18.3= 54 độ
c = 18.5 = 90 độ
k cho mk nha
HT
tam giac abc co 1/2 so do goc a bang 2/3 so do goc b bang so do goc c tinh so do cac goc tam giac abc
Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)
Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)
khi đó góc A=80o; B=60o;C=40o
tam giac abc co 1/2 so do goc a bang 2/3 so do goc b bang so do goc c tinh so do cac goc tam giac abc
Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)
nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)
Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C
nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)
\(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\)
Áp dụng t/c của dãy TSBN ta có:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\)
Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)
\(\widehat{B}=20^o\cdot3=60^o\)
\(\widehat{C}=20^o\cdot2=40^o\)
Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o