K=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{21^2}\). Chứng minh K<\(\frac{3}{4}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(K=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\) . Chứng minh \(\frac{1}{5} < K < \(\frac{1}{3}\)
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
Chứng minh :
\(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}-\frac{1}{k}\)
VỚI \(k\varepsilon N,k\ge2\)
ta có \(\left(1+\frac{1}{k}-\frac{1}{k-1}\right)^2\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)\(+\frac{2}{k-1}-\frac{2}{k}-\frac{2}{k\left(k-1\right)}\)
=\(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2k-2k+2-2}{k\left(k-1\right)}\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
=> \(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}\)= \(1+\frac{1}{k-1}-\frac{1}{k}\)(đpcm)
CÂU CỦA BẠN KIA SAI R
bạn ấy bị sai cái phần mà cộng cho cả tử và mẫu cho a/k
cho k >1 , chứng minh rằng : \(\frac{1}{k^2}\)< \(\frac{1}{k-1}\)-\(\frac{1}{k}\)
áp dụng kết quả trên , hãy suy ra \(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{n^2}\)< 2
\(\dfrac{1}{k^2}<\dfrac{1}{k(k-1)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)
Ap dung:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\ldots+\dfrac{1}{n^2}<1+\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\ldots+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)=2-\dfrac{1}{n}<2\)
Chứng minh rằng :
\(\frac{7}{12}< \frac{1}{21}+\frac{1}{20}+...+\frac{1}{40}< 1\)
Chú ý p/s thứ 2 là 1/20 chứ k phải 1/22 nha
Chứng minh rằng:
a) \(\sin x - \cos x = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\;\left( {x \ne \frac{\pi }{2} + k\pi ,\;x \ne \frac{{3\pi }}{4} + k\pi ,\;k \in \mathbb{Z}} \right)\;\).
a) Ta có:
\(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)
b) Ta có:
\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)
Chứng minh:
\(\frac{1}{1\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2004\sqrt{2005}}< 2\)
P/s: Có ai biết đẳng thức: \(\frac{1}{\sqrt{k}\left(k-1\right)}< .....\). MÌnh quên mất cái đẳng thức đó; bạn nào biết thì viết và chứng minh lại giúp mình với. Thanks
với \(a_1,a_2,a_3,.....,a_n>0;a_1+a_2+a_3+....+a_n=k\)
Chứng minh\(\left(a_1+\frac{1}{a_2}\right)^2+\left(a_2+\frac{1}{a_3}\right)^2+...+\left(a_n+\frac{1}{a_1}\right)^2\ge\frac{1}{n}\left(\frac{k^2+n^2}{k}\right)^2\)