Những câu hỏi liên quan
PM
Xem chi tiết
BV
Xem chi tiết
NT
6 tháng 11 2021 lúc 21:49

\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)

\(=\left(5n+10\right)\left(n+4\right)⋮5\)

Bình luận (0)
TA
Xem chi tiết
NN
23 tháng 10 2016 lúc 13:40

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)

 

Bình luận (0)
VQ
Xem chi tiết
H24
2 tháng 10 2017 lúc 20:04

\(=\left(4n-3\right)^2-\left(3n-4\right)^2\)

\(=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)\right]-\left(3n-4\right)\)

\(=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)

Vậy \(\left(4n-3\right)^2-\left(3n-4\right)^2\)   Chia hết cho 7 với mọi n thuộc Z

Bình luận (0)
NT
2 tháng 10 2017 lúc 11:32

t.i.c.k mik mik t.i.c.k lại

Bình luận (0)
TH
2 tháng 10 2017 lúc 12:17

\(\left(4n-3\right)^2-\left(3n-4\right)^2=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)-\left(3n-4\right)\right]=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 10 2018 lúc 7:49
Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Bình luận (0)
PH
Xem chi tiết
DH
4 tháng 4 2015 lúc 19:26

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

Bình luận (0)
LD
2 tháng 1 2017 lúc 16:49

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm

Bình luận (0)
CT
Xem chi tiết