Cho a,b,c,d > 0 . Và a.b.c.d = 1 . Chứng minh a.b + c.d lớn hoặc = 2
1) Cho a^2+b^2/c^2+d^2=a.b/c.d với a,b,c,d khác 0 . Hãy Chứng Minh rằng a/b=c/d hoặc a/b=d/c
2) Tính tổng : A = c/a1.a2 + c/a2.a3 + .......+c/an-1.an Và a2 -a1=a3-a2=....=an-an-1 =k ( a1 là số hạng đầu tiêng , an là số hạng thứ n)
cho a/b = c/a # + - 1 và c # 0
chứng minh: (a-b/c-d)2 = a.b/c.d
chú ý nè :# 1 ; # 0 là khác 1; khác 0 nha các bạn
a+b=c+d và a.b+1=c.d hãy chứng minh c=d
kho that day!!!!!!!!!!!!!!!!!
khó thì nói lm j hả cái bác các thím
Cho các số nguyên a, b, c, d sao cho a + b = c + d và a.b + 1 = c.d
Chứng minh c = d.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED)
=> a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Cho a,b,c,d thuộc Z sao cho a.b=c.d+1 và a+b = c+d .Chứng Minh a=b
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
cho a/b=c/d chứng minh a.b/c.d=((a+b)^2/c+d)^2
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{2.a^2-3.a.b+3.b^2}{2.b^2+3.a.b}=\frac{2.c^2-3.c.d+5.d^2}{2.d^2+3.c.d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm