Tìm GTLN của biểu thức : \(A=4-\sqrt{x^2-4x+4}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Bài 1: a) Tìm GTNN của biểu thức
Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
b) Tìm GTLN của biểu thức
S = \(\sqrt{x-2}+\sqrt{x-3}\) biết x + y = 6
Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\) = l x+2 l + l 2-x l \(\ge\) l x+2+2-x l = l 4 l = 4
Dấu " = " xảy ra khi và chỉ khi
(x+2)(2-x) \(\ge\)0
<=> x+2 \(\ge\)0 và 2-x \(\ge\) 0
hoặc x+2 \(\le\)0 và 2-x \(\le\)0
<=> x \(\ge\)-2 và x\(\le\)2
hoặc x\(\le\)-2 và x\(\ge\)2
<=> -2\(\le\)x\(\le\)2
vậy GTNN của Q = 4 khi -2\(\le\)x\(\le\)2
Cho x>=1/2 . Tìm GTLN của biểu thức \(A= {\sqrt{4x-1} +\sqrt{4x^2-1}}\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Tìm GTNN , GTLN của biểu thức :
A=\(\sqrt{x+4}+\sqrt{6-x}\)
Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$
Tìm GTLN của biểu thức A=-x^4+2x^3-3x^2+4x+2018
\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)
\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)
\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)
Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3