Phân tích các đa thức sau thành nhân tử:
\(a,\left(x+y\right)^3-x^3-y^3\)
\(b,x^2+6xy+9y^2\)
Phân tích các đa thức sau thành nhân tử:
\(a,\left(x+y\right)^3-x^3-y^3\)
\(b,x^2+6xy+9y^2\)
Dùng hằng đẳng thức là xong
a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
b, \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
Phân tích các đa thức sau thành nhân tử:
a) \(4{a^2} + 4a + 1\)
b) \( - 3{x^2} + 6xy - 3{y^2}\)
c) \({\left( {x + y} \right)^2} - 2\left( {x + y} \right)z + {z^2}\)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
1 phân tích đa thức thành nhân tử
a,\(3x^2-6xy+3y^2\)
b,\(\left(x-y\right)^2-4x^2\)
2.tìm x biết
a,2x(x-3)-x+3=0
b,\(x^2+5x+6=0\)
`1)`
`a)3x^2-6xy+3y^2=3(x^2-2xy+y^2)=3(x-y)^2`
`b)(x-y)^2-4x^2=(x-y-2x)(x-y+2x)=(-x-y)(3x-y)`
`2)`
`a)2x(x-3)-x+3=0`
`<=>2x(x-3)-(x-3)=0`
`<=>(x-3)(2x-1)=0`
`<=>[(x=3),(x=1/2):}`
`b)x^2+5x+6=0`
`<=>x^2+2x+3x+6=0`
`<=>(x+2)(x+3)=0`
`<=>[(x=-2),(x=-3):}`
phân tích đa thức thành nhân tử
a, \(x^2-y^2\)
b,\(x^2-6xy+9y^2-36\)
a. \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b. \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
a: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b: \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
Phân tích đa thức sau thành nhân tử: a) x^2-4x+4-y^2 b) x^2+6x-4y^2+9 c) x^2-6xy+9y^2-36
a) = (x - 2)2 - y2
= (x - 2 - y)(x + 2 + y)
b) = (x^2 + 6x + 9) - (2y)^2
= (x + 3)2 - (2y)2
= (x - 2y + 3)(x + 2y + 3)
c) = (x - 3y)2 - 62
= (x - 3y - 6)(x - 3y + 6)
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
Phân tích các đa thức sau thành nhân tử
a, ay^2 - 2ayz + az^2
b, x^2+ 6xy + 9y^2 - 16
c, 7a-7b+a^2-b^2
d, 36x^4 - 13x^2
e, 2x^3 - 18x
f, x2 - 49 + y^2 - 2xy
g, 2x+2y-x^2-xy
h, (x^2 + 3)^2 + 16
làm ơn giải chi tiết giúp mik vs ạ
a: \(=a\left(y^2-2yz+z^2\right)\)
\(=a\left(y-z\right)^2\)
b: \(=\left(x^2+6xy+9y^2\right)-16\)
=(x+3y)^2-16
=(x+3y+4)(x+3y-4)
c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)
=(a-b)(7+a+b)
d: \(36x^4-13x^2\)
=x^2*36x^2-x^2*13
=x^2(36x^2-13)
f: x^2-2xy+y^2-49
=(x-y)^2-49
=(x-y-7)(x-y+7)
e: 2x^3-18x
=2x(x^2-9)
=2x(x-3)(x+3)
g: 2x+2y-x^2-xy
=2(x+y)-x(x+y)
=(x+y)(2-x)
h: (x^2+3)^2+16
=x^4+6x^2+25
=x^4+10x^2+25-4x^2
=(x^2+5)^2-4x^2
=(x^2-2x+5)(x^2+2x+5)
Phân tích đa thức thành nhân tử
a) 2x^3 + 6xy - x^2*z - 3yz
b) x^2 - 6xy + 9y^2 - 49
a) \(2x^3+6xy-x^2z-3yz\)
= \(\left(2x^3+6xy\right)-\left(x^2z+3yz\right)\)
=\(2x\left(x^2+3y\right)-z\left(x^2+3y\right)\)
=\(\left(x^2+2y\right)\left(2x-z\right)\)
b)\(x^2-6xy+9y^2-49\)
=\(x^2-2.x.3y+\left(3y\right)^2-7^2\)
=\(\left(x-3y\right)^2-7^2\)
=\(\left(x-3y+7\right)\left(x-3y-7\right)\)
Phân tích các đa thức sau thành nhân tử(sử dụng các hằng đẳng thức)
a)\(16x^2-\left(x^2+4\right)^2\)
b)\(\left(x+y\right)^3+\left(x-y\right)^3\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )