Những câu hỏi liên quan
VV
Xem chi tiết
PA
Xem chi tiết
NA
8 tháng 10 2018 lúc 23:28

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)

\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)

\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)

\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)

                                  \(\Leftrightarrow\sqrt{n+1}\ge2015\)

                                 \(\Leftrightarrow n+1=2015^2=4060225\)

\(V~~n=4060224\)

Bình luận (0)
MN
Xem chi tiết
PA
Xem chi tiết
DQ
2 tháng 10 2020 lúc 22:50

\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)

Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2  vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501

Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)

Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)

Ta chọn n=2501

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
15 tháng 12 2023 lúc 12:15

Để \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên thì \(\sqrt{n-1}⋮2\)

=>\(n-1=\left(2k\right)^2=4k^2\)(k\(\in\)Z) và n>=1

=>\(n=4k^2+1\)

n<30

=>\(4k^2+1< 30\)

=>\(4k^2< 29\)

=>\(k^2< \dfrac{29}{4}\)

mà k nguyên

nên \(k^2\in\left\{0;1;4\right\}\)

\(n=4k^2+1\)

=>\(n\in\left\{1;5;17\right\}\)

Bình luận (0)
DN
Xem chi tiết
QS
Xem chi tiết
TQ
9 tháng 10 2018 lúc 20:15

Ta có \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\left(\sqrt{n}-\sqrt{n+1}\right)=\sqrt{n+1}-\sqrt{n}\)

Vậy \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{n+1}-\sqrt{n}=-1+\sqrt{n+1}=\sqrt{n+1}-1\ge2014\Leftrightarrow\sqrt{n+1}\ge2015\Leftrightarrow n+1\ge2015^2\Leftrightarrow n\ge2015^2-1\)Vậy số tự nhiên n nhỏ nhất là 20152-1

Bình luận (0)
DN
Xem chi tiết
NH
Xem chi tiết